The Status of Water Losses, Non-Revenue Water & Water Use Efficiency in South African Municipalities

(2012/13 to 2022/23)

"Water is Life, Sanitation is Dignity"

Department: Water and Sanitation **REPUBLIC OF SOUTH AFRICA**

This document was prepared and published by

The Department of Water and Sanitation

Private Bag X313	
Pretoria	
0001	

Ndinaye Building
178 Francis Baard Street
Pretoria
South Africa

For more information or comments on this document contact: Director: Water Use Efficiency Department of Water and Sanitation (DWS) Tel: +27 12 336 7886 Fax: +27 12 308 8748 (fax to e-mail) www.dws.gov.za

DOCUMENT CONTROL SHEET

Project name:	WP11432: Professional service provider under the Water Services Term Contract No.WP11359 to provide specialist and technical support for the No Drop Programme for a period of six months.
Report title:	Status of Water Loss, Water Use Efficiency and Non-Revenue Water in South African Municipalities (2012/13 to 2022/23)
Report date:	November 2023
Revision status:	Final

ACKNOWLEDGMENTS

This study would not have been possible without the valuable contributions of the following institutions and stakeholders:

- Department of Water and Sanitation National Office
- Department of Water and Sanitation Provincial Offices
- Water Boards
- Metropolitan, District and Local Municipalities
- Professional Service Providers

Their support, strategic insights, encouragement, participation, and advice are appreciated.

EXECUTIVE SUMMARY

The National Development Plan (NDP) sets out the vision for South Africa by mentioning the balance between the economy, socio-economic development, and environmental sustainability.

The National Water and Sanitation Master Plan (DWS, 2018), in tandem with the macro national vision, issued an ambitious and timely call to action for the water sector, including (i) the provision of equitable access to reliable water supply, (ii) protection, management and development of the nations' water resources in a manner that supports justifiable and ecologically sustainable economic and social development, and (iii) transformative access to water to redress the racial imbalances created by apartheid. The journey towards achieving these objectives begins with understanding the extent and nature of the Non-Revenue Water (NRW) challenges faced by those tasked with its management.

Objectives

The key objectives of this study were as follows:

- Assess the status of water losses in South Africa, to strengthen the efforts of the Water Services Authority (WSA) in managing NRW, and to amplify the need for an effective regulatory and enforcement environment.
- Report on System Input Volume (SIV), NRW, water loss and efficiency trends using 2012/13 to 2022/23 annual municipal data (i.e., 10 financial years).
- Calculate a 2022/23 water balance for each municipality, in the absence of better information.
- Assess municipal water loss and water use efficiency against regulatory compliance requirements and best management practices.

The primary intent of this report is to provide a status update of the levels of NRW, water losses and water use efficiencies in South Africa. While it builds on the regulatory compliance programme which commenced in 2015, this report focusses solely on Sub-criterion 1.2: Water Balance of the No Drop programme.

The status update on NRW in South African municipalities should serve as a catalyst for the next round of the No Drop assessment, with expanded Key Performance Indicators (KPIs) for all municipalities. It is also envisaged that this report will create a higher level of awareness and fast track prioritisation and execution of Water Conservation and Water Demand Management (WC/WDM) initiatives to address prevalent issues in a coherent manner.

Policy and Legislation

The original mandate for efficient and effective distribution of water resources comes from the **Constitution** of the Republic of South Africa Act (No. 108 of 1996), which states that every citizen has, amongst other things, a right to sufficient food and water. Thus, water is placed at the forefront of human development, emphasising the importance of water management and its beneficial use. The National Water Act (No. 36 of 1998) recognises that water is a scarce and precious resource that belongs to all the people of South Africa, and that the goal of water resource management is to achieve the sustainable use of water for the benefit of all South Africans. The Water Services Act (No. 108 of 1997) provides a framework for the provision of water supply and sanitation services to end users such as households, businesses, and industries, within municipalities. It sets the standards for the local and provincial spheres of government and establishes the norms and standards for tariffs. The Regulations relating to Compulsory National Standards and Measures to Conserve Water (GNR.509 of 8 June 2001) under the Water Services Act (No. 108 of 1997) provides for the protection of consumers and WSAs, and for ensuring the application of sound management principles. The National Water Resources Strategy III (NWRS3, 2023) outlines the importance of WC/WDM and NRW management, and that these will be priority programmes for reaching the 15 % demand reduction target. The National Water and Sanitation Master Plan (2018) recognises that building a water secure future

will require proactive infrastructure management, effective water infrastructure operations and maintenance, and an overall reduction in future water demand, while considering infrastructure development and augmentation, if necessary. The *DWS Strategic Plan for the 2020/21 to 2024/25* (Vote 41) sets out a performance target approach to WC/WDM, highlighting its importance as one of the priority implementation areas for the DWS. The Strategic Plan also clarifies that set targets could be met using existing grant mechanisms, considering the impact of WC/WDM on bulk infrastructure requirements.

History of Benchmarking Studies

South Africa has a 20-year benchmarking history, starting with the adaptation of the International Water Association's methodology for calculating and understanding NRW and water losses in 2002, in *Development of a pragmatic approach to benchmark water losses in potable water distribution systems in South Africa*. The first comprehensive national benchmark study was published in 2012 in *The State of Non-Revenue Water in South Africa* (2012). Since 2012, several detailed assessments and updates were undertaken, including the No Drop assessment in 2015. The last national water loss benchmarking study was based on 2021/22 data, published in the *No Drop Watch Report 2023*.

Stakeholder Engagement and Collection of Water Balance Data

The water balance data for this study was collected as part of the 2023 No Drop audits. Information and training sessions were well attended and expected deliverables and due dates were communicated. All communications and follow-up with municipalities were through the Departmental Provincial Offices and standard International Water association (IWA) water balance templates were circulated. The process for completion of the templates was workshopped and discussed during several training sessions in the past 10 years, to entrench standardisation of information gathering and reporting.

Data Submission Statistics

There has been a noticeable improvement in the quality of data for Provinces that have active data collection and collation programmes combined with regular engagements. Municipalities in these Provinces are requested to report on a regular basis at structured forums and reconciliation strategy progress meetings.

To differentiate the useability of data, data were categorised into one of three groups:

- **High confidence level**: Data sets are submitted on a regular basis, show trends, and are credible.
- **Medium confidence level**: One or more data sets were submitted in the past three years and seem credible, with few gaps and/or inaccuracies.
- Low confidence level: None or one data set was submitted in the past three years, and the data sets submitted are questionable, with considerable gaps and/or inaccuracies.

A total of 88 datasets (61%) were received from WSAs, which is the highest to date. Less than 50% of WSAs were able to submit water balance data in previous surveys. The confidence levels exclude those for the WSAs that did not submit data, that is, when water balances were calculated, extrapolated, or estimated.

Estimated Water Balance

Prior to the 2017 benchmark report, all reports calculated the national water balance based on extrapolation. The national water balance is highly influenced by and dependent on the metro and secondary city data that have high confidence levels, while data for Category C2, B3 and B4 municipalities have low confidence levels and are poorly represented in the sample. The extrapolated results provided NRW figures between 35% to 40%, depending on the extrapolation methodology followed. To improve understanding of NRW and water losses in South Africa, the extrapolation method was substituted with a bottom-up approach, estimating a water balance for each municipality that could not provide information.

National Water Balance

The national water balance indicates a System Input Volume (SIV) of 4.39 billion m³/annum, NRW of 2.08 billion m³/annum (47.4%) and water losses of 1.79 million m³/annum (40.8%). NRW and water losses have increased by a notable 5.9% and 4.3% respectively from June 2016. However, the greatest increase was in the past two years, attributed to the increased demands and the impact of the COVID-19 pandemic. The fluctuation between 2016 and 2019 was generally less than 1%.

There has been a noticeable increase in billed unmetered consumption because of incorporating Free Basic Water (FBW) supply in the estimated water balances, especially for rural municipalities. Unbilled unmetered consumption remains lower than expected, considering the high number of unbilled properties in South Africa. Municipalities must correct their water balance calculations and show any water use after an accepted connection as authorised consumption, and not as water loss.

National NRW and water loss trends show a steady increase in NRW over the past 10 years and SIV projections with WC/WDM have been exceeded. The figures are dominated by Category A, B1 and B2 municipalities, some of whom have made significant strides in improving NRW management, reducing water losses, and managing the demand in line with reconciliation strategy targets. There is significant scope for improvement of NRW and all municipalities would benefit from targeted demand management programmes, including community education and awareness, leak repair, infrastructure refurbishment, pressure management, and installation of bulk meters, amongst other measures.

National trends suggest that the per capita consumption has remained constant over the past 10 years, which is commendable. However, WC/WDM efforts must be elevated considering the level and reliability of service and inefficiencies, and that South Africa is one of the 30 driest countries in the world. Nonetheless, the per capita consumption is significantly lower than the previous national average of 237 I/c/d presented in June 2016 because of the prevailing droughts in parts of South Africa, deteriorating infrastructure and service delivery. The subsequent water restrictions and WC/WDM interventions had a significant impact on the SIV, especially in the Western Cape.

The Infrastructure Leakage Index (ILI) deteriorated drastically from 2016 to date, showing signs of improvement in 2017 and 2018. The ILI of 7.0 indicates poorly managed physical losses. The COVID-19 pandemic has played havoc with municipal water losses and this trend is expected to improve once municipalities have returned to normal, eliminated the leak repair back-logs, and improved revenue collection.

The results indicate increased NRW, water losses, and ILI, but a significant decrease in the national per capita consumption. Given the increases on three key NRW metrics, WC/WDM must be implemented as a matter of urgency in all Provinces, especially considering that several Provinces have NRW and water losses above 50%. There is significant scope for improvement in reporting levels, data accuracy and a reduction in SIV, NRW, water losses and improved efficiency across South Africa. Only continuous monitoring and analyses will provide a credible benchmark against which progress made with the implementation of WC/WDM can be measured. Continuous monitoring should also influence interventions required to manage demand, water losses, and NRW.

Conclusions

The following conclusions are drawn from the assessment:

- A total of 88 datasets (61%) were received from WSAs, which is the highest number to date. Less than 50% of WSAs were able to submit water balance data in previous surveys. The confidence level of the data submitted varies between high (55%), medium (18%) and low (27%).
- **Category A** Metropolitan municipalities continue to report consistently and most can provide a water balance monthly. This is encouraging, considering that metropolitan municipalities represent 53.3% of the total water use and 47.3% of the population.
- Categories B1 and B2 Most secondary city and large municipalities can provide a water balance regularly, although there is considerable room for improvement in some Provinces. The secondary city and large municipalities represent 21.4% of the total water use and 20.8% of the population. These municipalities are of economic significance and should have the necessary budgets and resources to implement WC/WDM.
- Categories C2, B3 and B4 53% of the small and rural municipalities can provide an accurate water balance regularly. Reasons for this include lack of budget, limited skills and capacity, difficultly measuring the supply due to the large number of boreholes, and large indigent consumer bases. These municipalities represent approximately 25.3% of the total water use and 31.9% of the population.
- Water balance information is continuously updated and improved, which means that the data shown in this report differs from the data presented previous benchmarking studies.
- The current focus is to encourage the submission of the most basic water balance regularly, and not focussing on accuracy. Although the DWS highlights and fixes typical errors and anomalies, analysing, interpreting, and improving the water balance can become better over time as the DWS and WSA becomes more acquainted with the methodology and results. The results from this study should be seen as indicative of NRW and water losses in South Africa and improving the level of confidence will require significant time and resources.

- Water losses and NRW have increased in most municipalities since the onset of the Covid-19 pandemic in early 2020. The increase in NRW and water losses are attributed to reduced payment levels, increase supply to curb the spread of the virus, operations and maintenance budget cuts, and lack of capacity in municipalities to undertake repairs due to ill health and deaths.
- The 2022/23 national water balance indicates an SIV of 4 389.3 million m³/annum, NRW of 2 078.6 million m³/annum (47.4%) and water losses of 1 789.9 million m³/annum (40.8%). NRW and water losses have increased by a notable 5.8% and 4.3%, respectively, from 2016. However, the greatest increase was in the past three years and attributed to the COVID-19 pandemic. The fluctuation between 2016 and 2019 was generally less than 1%.
- There has been a noticeable increase in billed unmetered consumption because of incorporating FBW supply in the estimated water balances, especially for rural municipalities. Unbilled unmetered consumption remains lower than expected, considering the high number of unbilled properties in South Africa. Municipalities must correct their water balance calculations and show any water use after an accepted connection as authorised consumption and not as water loss.
- The national NRW and water loss trends show a steady increase in NRW over the past 10 years, and SIV projections with WC/WDM is gradually being exceeded. The figures are highly influenced by the Category A, B1 and B2 municipalities, some of whom have made significant strides in improving NRW management, reducing water losses, and managing the demand in line with reconciliation strategy targets.
- National trends suggest that the per capita consumption of 218 l/c/d has remained constant over the past 8 years, which is commendable. However, WC/WDM efforts must be elevated, considering the level of service and inefficiencies, and that South Africa is one of the 30 driest countries in the world. Nonetheless, the per capita consumption is significantly lower than the previous national average of 237 l/c/d presented in June 2016 because of the prevailing droughts in parts of South Africa and increasing intermittent supply problems. The subsequent water restrictions and WC/WDM interventions had a significant impact on the SIV, especially in the Western Cape.
- The ILI of 7.0 deteriorated dramatically from 2016 to 2023, showing signs of improvement in 2017 and 2018. The COVID-19 pandemic has adversely affected municipal water losses, and this trend is expected to improve once municipalities have returned to normal, eliminated the leak repair back-logs, and improved revenue collection.
- The results indicate increased NRW, water losses and ILI, but a significant decrease in the national per capita consumption. Given the increases on three key NRW metrics, WC/WDM must be implemented as a matter of urgency in all Provinces, especially considering that several Provinces have NRW and water losses above 50%. There is significant scope for improvement in reporting levels, data accuracy, and reduction of SIV, NRW, water losses and improved efficiency across South Africa. Only continuous monitoring and analyses will provide a credible benchmark against which the progress made with the implementation of WC/WDM can be measured.
- All municipalities would benefit from targeted demand management programmes, including community education and awareness, leak repair, infrastructure refurbishment, pressure management, and installation of bulk meters, amongst other measures.
- Based on the functional expenditure and SIV of 127 WSAs, the average cost of supplying water is R 13.07/kl. This ranges from R 17.32/kl for metropolitan municipalities to R 12.06 for Category B3 municipalities. The cost of supplying rural municipalities (Categories B4 and C2) is the highest, ranging from R 14.26/kl to R 17.64/kl. This is a meaningful change from previous assessments that suggested that the cost of supplying water in rural schemes is less than in large municipalities. The higher cost is justified, considering that these schemes often consist of many small systems with boreholes, which are expensive to operate.
- Using the national average and category average tariffs, the estimated cost to supply water in South Africa is between R 60 and R 70 billion per annum and revenue of between R 42 and R 44

billion is generated from water sales. The value of NRW is between R 28 and R 33 billion at R 13.07/kl which is higher than previous estimates. The increase is due to above inflation water tariff increases from water boards, and the under estimation of water supply costs to rural municipalities.

- The results show that approximately R 1 billion per annum could be saved if the SIV is reduced by 2%, and municipalities would generate nearly R 1 billion per annum for every 2% increase in revenue. The nett benefit could be R 10 billion per annum if revenue is increased by 10% and the SIV is reduced by 10%. Reducing the SIV by 10% and increasing the revenue by 10% would reduce the national NRW figure to 35.7%, and the per capita consumption to 195 l/c/d.
- The estimated water balances increase the national percentage NRW by approximately 5.5% and reduces the I/c/d by approximately 23 I/c/d. The estimated water balances increases the national figures, and it is highly unlikely that the NRW in reporting municipalities would be lower than in non-reporting municipalities.

Recommendations

The following recommendations are made to build on the progress made with reporting and the implementation of WC/WDM in the municipal environment:

- All Provincial Offices should establish reporting templates, schedule meetings with municipalities to confirm targets, analyse the water balance information, and provide feedback. The reporting structures in well performing Provinces are now well established and managed by the Provinces, and most municipalities are reporting quarterly. The initiative was supported by Regulations and sending directives to municipalities who did not respond. A similar approach could be followed for all Provinces to improve communications and water balance reporting.
- The national NRW assessment suggests that 40% of municipalities cannot provide basic information such as monthly consumption figures and only 44% can provide information with a medium to high confidence level. One of the key challenges with gathering the information is the poor communication channels with municipalities, which include resigned staff and a considerable number of private e-mails. Discussions also indicate that in some cases municipalities are unwilling to provide the information as it reflects badly on them, or they feel that the information has already been submitted through the WSDP and various questionnaires. Government should reconsider communication channels with municipalities. Communication should be more formal, avoid duplication, and target senior management in the organisation. In this regard, the circulars from National Treasury provide clear guidelines to municipalities and communications are only with the mayor, municipal manager, and CFO.
- Maintenance of the reconciliation strategies must continue and should be used to monitor the progress made with the implementation of WC/WDM.
- Ongoing monitoring and reporting of municipal NRW and water loss performance by DWS against determined targets and baselines are critical.
- DWS Provincial Offices / Catchment Management Agencies (CMA) / Water Boards must increase their skills and capacity to provide WC/WDM support to municipalities, for monitoring and reporting.
- Budgets are allocated towards new infrastructure projects through WSIG, RBIG, MIG, and other funding programmes, but the management of these funds is fragmented, with emphasis on new infrastructure and insufficient focus on WC/WDM.
- The No Drop incentive-based regulation programme should be rolled-out as planned, alongside the other Drop programmes, to elevate WC/WDM regulation in the municipal environment. DWS should also enforce its regulatory mandate to penalise municipalities that do not comply.

- The recommendations of South Africa's National Development Plan (Vision for 2030) (National Planning Commission, 2013) must be implemented, including the call for clear national and local targets to be achieved by 2022.
- The Regulations Relating to Compulsory National Standards and Measures to Conserve Water (GNR.509 of 8 June 2001) states that a water services institution must fit a suitable water volume measuring device or volume controlling device to every user connection to control demand. Many municipalities do not comply with this regulation, which results in excessive leakages on private properties through leaking taps and toilets as there is no incentive for consumers to fix the leaks. DWS should consider a policy whereby water services institutions are compelled to either measure and control or fix leaks on private properties, as government cannot continue to fund new infrastructure projects to supplement leakage. DWS is already encouraging the fixing of leaks through various programmes.
- The National Water and Sanitation Master Plan (DWS, 2018) states that South Africa is facing a
 water crisis caused by insufficient water infrastructure maintenance and investment, recurrent
 droughts driven by climatic variation, inequities in access to water and sanitation, environmental
 degradation and resource pollution, and a lack of skilled water engineers. This crisis is already
 having significant impacts on economic growth and on the well-being of everyone in South Africa.
 The recommendations of the National Water and Sanitation Master Plan should be implemented
 as a matter of urgency.
- Too many local municipalities are not aware of the reconciliation strategies or expect DWS to
 provide the necessary funding to implement these strategies. Municipalities must be reminded of
 their responsibilities in terms of the Water Services Act (No. 108 of 1997) and actively participate,
 budget through the Integrated Development Planning process, and implement the results from the
 reconciliation strategies.
- Municipalities should encourage consumers to appreciate the value of water and enforce the user pays principal, through on-going awareness programmes.
- Municipalities should continue their effort to capitalise on the awareness created and sustain the savings achieved during the drought.
- Municipalities must actively participate and report at the reconciliation strategies meetings and use the outcomes to prioritise resources and budgets.
- Monitoring and reporting on water balances by municipalities could become more self-regulatory if
 a policy is implemented that no new infrastructure projects will be funded unless the municipality
 can provide actual consumption figures and proof that their water losses are under control. The
 IWA water balance should become the backbone of all water related management and decision
 support systems, especially grant application and awarding processes.
- Municipalities should increase their efforts to achieve the targets set under the reconciliation strategies to ensure water security, and targets must be reviewed regularly.
- Municipalities should increase their efforts to reduce NRW and the negative impact it has on their ability to generate income and operate a viable water service.
- Municipalities should resolve metering and billing issues to increase payment levels, encourage consumer fixing of leaks, prosecute illegal water connections, and reduce theft of water.
- Municipalities should resolve intermittent supply as it is a prerequisite for an effective WC/WDM programme. Intermittent supply is ineffective (consumers adapt), corrupts meter readings and billing data, expensive to operate, damage pipe seals with subsequent increased leakage and is disruptive.
- The recommendations of the Second Edition of the National Water Resource Strategy (DWA, June 2013) must be implemented, including the call for greater emphasis on meeting specific targets to reduce water loss. WC/WDM measures will have multiple benefits in terms of the postponement of infrastructure augmentation, mitigation against climate change, support for economic growth, and ensuring that adequate water is available for equitable allocation.

- Municipal asset management needs to be improved to ensure greater sustainability of water supply services.
- There is close correlation between operations, maintenance, low water losses and NRW. Municipalities should implement proactive operations and maintenance programmes to coincide with WC/WDM programmes.
- Closer involvement and collaboration with National Treasury are critical to ensure issues related to funding of WC/WDM programmes, and metering, reading and billing issues are resolved with municipal finance departments.
- Greater involvement of the private sector through public-private partnership, stewardship, and performance-based contracts should be encouraged to improve service delivery and expedite the implementation of WC/WDM interventions. National Treasury should review the procurement of these contracts to eliminate bottlenecks and attract private investment.
- On-going provision of mentorship to municipalities through the DWS Provincial Offices, Department of Cooperative Governance and Traditional Affairs (CoGTA), the South African Local Government Association (SALGA) and other institutions is critical.
- Closer involvement and collaboration with CoGTA and SALGA are critical to ensure issues related to human resources skills and capacity in municipalities, payment for services, and unauthorised water use are resolved.
- Closer collaboration is required with other national, provincial, and local government departments that are big water users. These include Departments of Education, Correctional Services, Health, Public Works, and Housing, to ensure leakages and wastage are brought under control.
- Every citizen has a right to, amongst other things, sufficient food, and water, placing water at the forefront of human development and therefore emphasizing the importance of its management and beneficial use. This human right comes with a responsibility and every citizen must use water sparingly, pay for water services, fix household leaks, report municipal leaks, and promote water use efficiency at home, work, and public facilities.

TABLE OF CONTENTS

Page

1	INTRODUCTION	1
1.1	BACKGROUND	1
1.2	OBJECTIVES	1
1.3	IWA WATER BALANCE	2
1.4	NO DROP OBJECTIVES	4
1.5	MUNICIPAL CATEGORISATION	4
2	LITERATURE REVIEW	5
2.1	POLICY AND LEGISLATION	5
2.2	BENCHMARKING STUDIES	7
3	METHODOLOGY	9
3.1	STAKEHOLDER ENGAGEMENT AND COLLECTION OF WATER BALANCE DATA	9
3.2	WATER BALANCE REPORTING TEMPLATE	9
3.3	DATA SUBMISSION STATISTICS	. 11
3.4	ESTIMATED WATER BALANCES	. 14
3.5	BENCHMARKS AND TARGETS	. 15
4	WATER BALANCE TRENDS	.17
4.1	GENERAL	. 17
4.2	EASTERN CAPE PROVINCE	. 18
4.3	FREE STATE PROVINCE	. 20
4.4	GAUTENG PROVINCE	. 22
4.5	KWAZULU NATAL PROVINCE	. 24
4.6	LIMPOPO PROVINCE	. 26
4.7	MPUMALANGA PROVINCE	. 29
4.8	NORTH WEST PROVINCE	. 31
4.9	NORTHERN CAPE PROVINCE	. 32
4.10	WESTERN CAPE PROVINCE	. 34
4.11	NATIONAL WATER BALANCE	. 36
5	BENCHMARKS	.39
5.1	INTRODUCTION	. 39
5.2	SENSITIVITY ANALYSIS	. 39
5.3	SYSTEM INPUT VOLUME	. 40
5.4	VOLUME NON-REVENUE WATER	. 42
5.5	PERCENTAGE NON-REVENUE WATER	. 44
5.6	LITRES PER CAPITA PER DAY	. 46
5.7	INFRASTRUCTURE LEAKAGE INDEX	. 48

5.8	BENCHMARK SUMMARY	50
6	FINANCIAL ANALYSIS	51
7	CONCLUSIONS	56
6	RECOMMENDATIONS	58
6.1	DEPARTMENT OF WATER AND SANITATION	
6.2	MUNICIPALITIES	
6.3	STAKEHOLDERS	60
	ENDIX A: MUNICIPAL WATER BALANCE SCORECARDS	

List of figures

Figure 1: Modified IWA water balance in South Africa	2
Figure 2: History of NRW benchmarking studies undertaken in South Africa	8
Figure 3: IWA water balance (million m ³ /annum)	. 10
Figure 4: SIV and NRW trend	. 10
Figure 5: Population and I/c/d trend	. 11
Figure 6: Water losses trend	. 11
Figure 7: Eastern Cape Province water balance (million m ³ /annum)	. 18
Figure 8: Eastern Cape Province SIV and NRW trend	. 19
Figure 9: Eastern Cape Province population and I/c/d trend	. 19
Figure 10: Eastern Cape Province water losses trend	. 20
Figure 11: Free State Province water balance (million m ³ /annum)	. 20
Figure 12: Free State Province SIV and NRW trend	. 21
Figure 13: Free State population and I/c/d trend	. 21
Figure 14: Free State water losses trend	. 22
Figure 15: Gauteng water balance (million m ³ /annum)	. 22
Figure 16: Gauteng SIV and NRW trend	. 23
Figure 17: Gauteng population and I/c/d trend	. 23
Figure 18: Gauteng water losses trend	. 24
Figure 19: KwaZulu Natal water balance (million m ³ /annum)	. 25
Figure 20: KwaZulu Natal SIV and NRW trend	. 25
Figure 21: KwaZulu Natal population and I/c/d trend	. 26
Figure 22: KwaZulu Natal water losses trend	. 26
Figure 23: Limpopo water balance (million m ³ /annum)	. 27
Figure 24: Limpopo SIV and NRW trend	. 27
Figure 25: Limpopo population and I/c/d trend	. 28
Figure 26: Limpopo water losses trend	. 28
Figure 27: Mpumalanga water balance (million m ³ /annum)	. 29
Figure 28: Mpumalanga SIV and NRW trend	. 29
Figure 29: Mpumalanga population and I/c/d trend	. 30
Figure 30: Mpumalanga water losses trend	. 30
Figure 31: North West water balance (million m ³ /annum)	. 31
Figure 32: North West SIV and NRW trend	. 31

Figure 33: North West population and I/c/d trend	. 32
Figure 34: North West water losses trend	. 32
Figure 35: Northern Cape water balance (million m ³ /annum)	. 33
Figure 36: Northern Cape SIV and NRW trend	. 33
Figure 37: Northern Cape population and I/c/d trend	. 34
Figure 38: Northern Cape water losses trend	. 34
Figure 39: Western Cape water balance (million m ³ /annum)	. 35
Figure 40: Western Cape SIV and NRW trend	. 35
Figure 41: Western Cape population and I/c/d trend	. 36
Figure 42: Western Cape water losses trend	. 36
Figure 43: National water balance (million m ³ /annum)	. 37
Figure 44: National SIV and NRW trend	. 37
Figure 45: National population and I/c/d trend	. 38
Figure 46: National water losses trend	. 38
Figure 47: SIV distribution per municipal category	. 40
Figure 48: SIV distribution per WSA	. 41
Figure 49: Volume NRW distribution per municipal category	. 42
Figure 50: Volume NRW distribution per WSA	. 43
Figure 51: Percentage NRW distribution per municipal category	. 44
Figure 52: Percentage NRW distribution per WSA	. 45
Figure 53: Litres per capita per day distribution per municipal category	. 46
Figure 54: Litres per capita per day per WSA	. 47
Figure 55: ILI distribution per municipal category	. 48
Figure 56: ILI per WSA	. 49
Figure 57: Cost of water supply (functional expenditure per kilolitre)	. 52
Figure 58: Functional revenue per kilolitre	. 53
Figure 59: Service charge per kilolitre	. 53
Figure 60: Functional revenue versus service charges - water revenue (per kilolitre)	. 54

List of tables

Table 1: Summary of data submissions and confidence levels Table 2: Water balance estimation guideline	12 14
Table 2: Water balance estimation guideline	14
Table 4: Percentage commercial loss guideline	15
Table 5: No Drop key performance areas	16
Table 6: Summary of households served (NWSKS, April 2023)	17
Table 7: Impact of estimated water balances	39
Table 8: Province benchmark summary	50
Table 9: Category benchmark summary	50
Table 10: Category A (metro) benchmark summary	50
Table 11: MTREF Table A2 Budgeted Financial Performance	51
Table 12: MTREF Supporting Table SA1 Supporting detail to 'Budgeted Financial Performance'	51
Table 13: Monetary value of water SIV, Revenue water and NRW	54
Table 14: Potential impact of reducing NRW	55
Table 15: Target water balance KPIs	55

ABBREVIATIONS

BD	Blue Drop		
CARL	Current Annual Real Losses		
DWS	Department of Water and Sanitation		
FBW	Free Basic Water		
GD	Green Drop		
ILI	Infrastructure Leakage Index		
IWA	International Water Association		
КРА	Key Performance Area		
KPI	Key Performance Indicator		
MNF	Minimum Night Flow		
MIIF	Municipal Infrastructure Investment Framework		
MTREF	Medium Term Revenue and Expenditure Framework		
ND	No Drop		
NDP	National Development Plan (2011)		
NRW	Non-Revenue Water		
NWRS1	National Water Resource Strategy 1 (2004)		
NWRS2	National Water Resource Strategy 2 (2013)		
NWSKS	National Water Services Knowledge System		
RDP	Reconstruction and Development Programme		
RPMS	Regulatory Performance Management System		
SIV	System Input Volume		
SLA	Service Level Agreement		
SWPN	Strategic Water Partners Network		
UARL	Unavoidable Annual Real Losses		
UFW	Unaccounted for Water		
WC/WDM	Water Conservation Water Demand Management		
WSA	Water Services Authority		
WSDP	Water Services Development Plan		
WSP	Water Services Provider		
WTW	Water Treatment Works		
WUL	Water Use License		

1 INTRODUCTION

1.1 BACKGROUND

The National Water and Sanitation Master Plan (DWS, 2018), in tandem with the macro national vision, issued an ambitious and timely call to action for the water sector, including (i) the provision of equitable access to reliable water supply, (ii) protection, management and development of the nations' water resources in a manner that supports justifiable and ecologically sustainable economic and social development, and (iii) transformative access to water to redress the racial imbalances created by apartheid. The journey towards achieving these objectives begins with understanding the extent and nature of the Non-Revenue Water (NRW) challenges faced by those tasked with its management.

The No Drop programme, like the Blue and Green Drop programmes, was designed to elevate the profile of NRW management, and the urgency with which the considerable water loss challenges must be addressed. Furthermore, the severe loss of revenue from both water being lost, and the overall revenue collection process needs a coordinated and coherent plan of action. This plan should assist in changing the dire circumstances which have led to a progressive decline in the state of infrastructure and the sustainability of municipalities.

The regulatory programme was established to encourage and acknowledge continuous improvements in water loss management, and institutionalise NRW in municipalities across South Africa, with the view that such a measure would help Water Services Authorities (WSAs) to face the nature and extent of the NRW challenges head on. It would also assist the municipalities to develop a business approach to water services to improve the overall sustainability of WSAs.

This study seeks to report the progress made in terms of NRW, water losses, and efficiency in the South African municipal sector. Progress can only be accurately determined through a concerted effort by all WSAs to report their water balances, as stipulated in the Regulations relating to Compulsory National Standards and Measures to Conserve Water (GNR.509 of 8 June 2001), under the Water Services Act (No. 108 of 1997). The work presented in this report builds on the previous No Drop and benchmarking assessments, from 2002 until 2023 when the last benchmarking update was undertaken. For the current and future benchmarking studies, the following factors are critical:

- Consistent and regular reporting on the NRW water balance to facilitate coherent and accurate water balance calculations.
- Regular and consistent communication between the municipalities and the Department of Water and Sanitation (DWS) Provincial Offices to timeously identify municipalities that require urgent assistance.
- Concerted budget allocation and a programmatic approach to implementing NRW interventions, including the installation of bulk meters to measure and monitor progress and develop a credible water balance, allowing for well informed decision making regarding reducing NRW in the municipalities.

1.2 OBJECTIVES

The key objectives of this study were as follows:

- Assess the status of water losses in South Africa, to strengthen the efforts of the WSA in managing NRW, and to amplify the need for an effective regulatory and enforcement environment.
- Report on System Input Volume (SIV), NRW, water loss and efficiency trends using 2012/13 to 2022/23 annual municipal data (i.e., 10 financial years).
- Calculate a 2022/23 water balance for each municipality, in the absence of better information.
- Assess municipal water loss and water use efficiency against regulatory compliance requirements and best management practices.

The primary intent of this report is to provide a status update of the levels of NRW, water losses and water use efficiencies in South Africa. While it builds on the regulatory compliance programme which commenced in 2015, this report focusses solely on Sub-criterion 1.2: Water Balance of the No Drop programme.

The status update on NRW in South African municipalities should serve as a catalyst for the next round of the No Drop assessment, with expanded Key Performance Indicators (KPIs) for all municipalities. It is also envisaged that this report will create a higher level of awareness and fast track prioritisation and execution of Water Conservation and Water Demand Management (WC/WDM) initiatives to address prevalent issues in a coherent manner.

1.3 IWA WATER BALANCE

A modified International Water Association (IWA) water balance was accepted as the standard reporting format for NRW and water losses in South Africa in the late 1990s. The IWA water balance is now generally accepted by most countries as the standard and most robust and comprehensive approach to report on NRW and water losses. The IWA water balance was slightly modified for South Africa to include free basic water (FBW), as shown in **Figure 1**.

	Authorised	Dilled outboriesd	Billed metered	Revenue water
	Consumption (All water use and	Billed authorised	Billed unmetered	basic water)
	wastage after connection on	Unbilled	Unbilled metered	
	user side)	authorised	Unbilled unmetered	
System input volume			Unauthorised consumption	Non-Revenue water
(Water security	Water Losses	Commercial or Apparent losses	Meter inaccuracies	(Financial sustainability of
	(All losses before		Transfer errors	the Water Service Authority and
	the connection on municipal side)		Leakage on distribution pipes	promotion of water use efficiency)
	(Environmentally and financially	Physical or Real losses	Leakage & overflows on storage tanks	· · · · , ,
	unattractive)		Leakage on connection pipes up to point of connection	

Figure 1: Modified IWA water balance in South Africa

Each component of the water balance is significant as it highlights various important issues. SIV provides an indication of water security, if compared to the water use license, and the water use efficiency in terms of litres per capita per day (I/c/d). Water losses are financially and environmentally unattractive and cannot be allowed, while NRW provides an indication of the financial sustainability of the WSA. Payment for water services promotes water use efficiency as it has been shown that people who pay for water tend to use it more sparingly.

The following definitions have been adopted from the *State of Non-revenue Water in South Africa* (Seago & McKenzie, 2007):

• System input volume (SIV) represents the potable volume input to the water supply system from the water utility's own sources, as measured at the water treatment works (WTW) outlet as well as any water imported from other sources, both corrected for known bulk metering errors.

- *Authorised consumption* is the volume of metered and / or unmetered water used by registered customers, the water utility, and others who are implicitly or explicitly authorised to do so by the water utility, for residential, commercial, and industrial purposes.
- *Water losses* are the sum of the physical and commercial losses and is calculated as the difference between the SIV and authorised consumption. In most countries, water losses include unaccounted for water (UFW), although the exact definition of UFW can vary from country to country.
- *Billed authorised consumption* is revenue water and is the volume of authorised metered and unmetered consumption which is billed by the water utility and paid for by the customer.
- Unbilled authorised consumption is the volume of authorised metered and unmetered consumption that is not billed or paid for.
- Commercial losses or apparent losses include unauthorised consumption (theft or illegal use), and all technical and administrative inaccuracies associated with customer metering. If commercial losses are reduced, more revenue is generated by and for the water utility.
- Real losses are the physical water losses from the pressurised system, up to the point of measurement of customer use. If real losses are reduced, more water is available for distribution to customers, or the total system input volume is reduced. In most cases, real losses represent the unknown component in the overall water balance. Therefore, the purpose of most water balance models is to estimate the magnitude of real losses so that the water utility can gauge whether it has a serious leakage problem. Real losses are calculated as the difference between total losses and estimated commercial losses.
- *NRW* is the volume of water supplied by the water utility but for which it receives no income. NRW incorporates unbilled (metered or unmetered) authorised consumption, apparent / commercial losses, and real / physical losses.

Once the water balance has been calculated, various KPIs can be calculated to measure the performance of the water supply system. With the water balance and KPIs available, the water utility can determine which components must be targeted first to improve efficiency, and reduce commercial losses, physical losses or NRW. Once the main water loss contributing components have been identified and quantified, it is important to identify the most effective WC/WDM intervention to address these losses. Therefore, it is important to understand the impact various WC/WDM interventions would have, to ensure that targets are achieved.

Key assumptions

- A connection is defined as any point of water supply by the WSA and can be formal, informal, or unauthorised. Formal connections are installed by the WSA and controlled with service level agreements. Informal connections are installed by users but are accepted by the WSA. Therefore, all users who are supplied with potable water by the utility should be included in the water balance and should have either a metered or unmetered connection. All informal connections that are accepted, and, therefore, authorised by the WSA, should be classified as unmetered connections, unless the WSA intends to remove them. Connections that are not accepted by the WSA should be classified as unauthorised (illegal) and removed or formalised, which usually involves a legal process of informing the user, imposing a fine and the possibility of prosecution.
- Any losses on the reticulation network, before metered or unmetered connections, should be classified as commercial or physical losses, whereas any leakage and water use after the connection should be classified as authorised consumption. The objective with this approach is to highlight unbilled or unmetered consumption and should not be confused with commercial or physical losses that occur on the reticulation network.
- The water balance is based on the potable water supplied to the system and does not make allowance for water treatment and raw water transmission losses. Water treatment losses are

typically between 5% and 10% of system input volume and must not be included in the water balance.

- FBW (Free Basic Water) is classified as metered or unmetered consumption billed at a zero rate, and forms part of the billed consumption and revenue water. Care must be taken not to duplicate FBW where it has already been included in the billed consumption.
- NRW and water losses are distinct. Water losses are a function of real and commercial losses and are resolved by fixing visible leaks and improving metering and billing efficiencies. NRW is a function of real losses, commercial losses and unbilled consumption and is resolved by addressing water losses and unbilled consumption.

1.4 OBJECTIVES OF THE NO DROP PROGRAMME

The No Drop Certification scorecard seeks to select the key areas (institutional, social, technical, economical, and legal proficiency) required for the sector that, if strengthened, will help improve the current level of water losses and NRW in the municipal sector in South Africa. In addition, No Drop endeavours to:

- Develop an incentive based, regulatory environment to improve service delivery and water security, and reduce water losses and NRW.
- Provide a guideline to water services institutions to reduce water losses and NRW and improve efficiency.
- Incorporate the full water services cycle of the WSA by targeting political and management levels, finance and technical departments, and users.
- Align with and complement the Blue Drop and Green Drop programmes.

1.5 MUNICIPAL CATEGORISATION

The data were categorised according to the Municipal Infrastructure Investment Framework (MIIF) and in DWS Provinces. The DWS Provinces are the equivalent of South Africa's provinces. The MIIF categorisation is as follows:

Category	Number Short description Long Description		Long Description	
Α	8	Metros	Metropolitan municipalities	
B1	19	Secondary cities	Local municipalities with the largest budgets	
B2	27	Large cities	Local municipalities with a large town as core	
B3	110	Small towns	Local municipalities with a small population and a significant proportion of urban population but with no large town as core	
B4	70	Mostly rural	Local municipalities which are rural with, at most, one or two small towns in their area	
C1	23	Districts without WSA status	District municipalities which are not WSAs	
C2	21	Districts with WSA status	District municipalities which are WSAs	

2 LITERATURE REVIEW

The World Economic Forum Report 2017 identified water as the third highest global risk in terms of impact, and it has featured in the top five global risks for the past five years. In addition, the World Economic Forum Report 2020 listed infectious diseases and livelihood crises as the top two prevailing threats, both inextricably linked to water. In this respect, water remains one of the key challenges globally. The South African water sector faces similar challenges, including NRW, resulting in a rapid decline in the delivery of basic services across municipalities in South Africa. The pressure on basic resources is compounded by increasing demands on the economy, population growth, socio-economic demands, and deteriorating water quality, and limited resources limit growth. These dynamics limit the extent and opportunities for growth in South Africa.

WC/WDM features prominently in planning, strategy, and policy documents, including the South African Constitution and relevant legislation. It is paramount that the objectives contained in these documents are achieved to contribute to the national goals of a better life for all through job creation and inclusive economic growth. South Africa has a 20-year benchmarking track record to measure the progress made with the implementation of these goals. The next sections summarise the key policies and legislation related to NRW and water loss control and the history of benchmarking reports to date.

2.1 POLICY AND LEGISLATION

The original mandate for efficient and effective distribution of water resources comes from the **Constitution** of the Republic of South Africa Act (No. 108 of 1996), which states that every citizen has, amongst other things, a right to sufficient food and water. Thus, water is placed at the forefront of human development, emphasising the importance of water management and its beneficial use. The Constitution provides the foundation for sound water management and the view that the resource must be used carefully to meet the condition of sufficiency for all.

The **National Water Act (No. 36 of 1998)** recognises that water is a scarce and precious resource that belongs to all the people of South Africa, and that the goal of water resource management is to achieve the sustainable use of water for the benefit of all South Africans. The Act aims to develop, protect, use, conserve, manage and control water resources overall, promoting the integrated management of water resources with the participation of all stakeholders. Therefore, the National Water Act addresses the development of strategies to facilitate adequate water resource management, alongside related legislation.

The **Water Services Act (No. 108 of 1997)** provides a framework for the provision of water supply and sanitation services to end users such as households, businesses, and industries, within municipalities. It sets the standards for the local and provincial spheres of government and establishes the norms and standards for tariffs. The main objectives of the Water Services Act (No. 108 of 1997) are to provide for:

- The right of access to basic water supply and the right to basic sanitation, by securing sufficient water and an environment not harmful to human health or well-being.
- Setting of national standards and norms as well as standards for tariffs in respect of water services.
- Preparation and adoption of water services development plans (WSDPs) by WSAs.
- A regulatory framework for water services institutions and water services intermediaries.
- Establishment and disestablishment of Water Boards and water services committees and their duties and powers.
- Monitoring of water services, and intervention by the Minister or by the relevant Provincial government departments.
- Financial assistance to water services institutions.
- Gathering information in a national information system and the distribution of that information.
- Accountability of water services providers (WSPs).
- The promotion of effective water resource management and conservation.

The Regulations relating to Compulsory National Standards and Measures to Conserve Water (GNR.509 of 8 June 2001) under the Water Services Act (No. 108 of 1997) provide for the protection of consumers and WSAs, and for ensuring the application of sound management principles. Key clauses related to the preparation of the IWA water balance are the following:

Regulation 10 – Water services audit as a component in the WSDP

10 (1) A water services authority must include a water services audit in its annual report on the implementation of its Water Services Development Plan (WSDP) required in terms of section 18(1) of the Act.

10(2) A water services audit must contain details for the previous financial year and, if available, comparative figures for the preceding two financial years of:

- (a) the quantity of water services provided.
- (b) the levels of services rendered.
- (d) cost recovery.
- (e) meter installation and meter testing.
- (g) water conservation and demand management including at least:
 - (i) the results of the water balance as set out in regulation 11.
 - (ii) the total quantity of water unaccounted for (water losses).
 - (iii) the demand management activities undertaken.
 - (iv) the progress made in the installation of water efficient devices.

Regulation 11: Water and effluent balance analysis and determination of water losses

11 (1) Within two years of the promulgation of these Regulations, a water services institution must every month:

(a) measure the quantity of water provided to each supply zone within its supply area.

(b) determine the quantity of unaccounted for water by comparing the measured quantity of water provided to all user connections within that supply zone.

- 11 (2) A water services institution must -
 - (a) take steps to reduce the quantity of water unaccounted for (water losses).
 - (b) keep record of the quantities of water measured and of the calculations made.

The legislative framework presented above provides a clear pathway for municipalities to ensure effective management of NRW. With respect to data collection, the following issues must be noted:

- WSAs are required to produce monthly water balances.
- WSAs have had 22 years during which to become accustomed to the practice of NRW data collection as the Regulations were promulgated in 2001.
- Irrespective of the monitoring and enforcement of the Regulations by the DWS, the development
 of a water balance for all water supply systems should be an ongoing and consistent practice, to
 identify areas requiring immediate action and to inform appropriate resource allocation for
 municipalities.

• The Regulations refer to monitoring cost recovery. This implies that the data collection process requires coordinated effort from both the technical and financial departments of municipalities to achieve a common goal, namely, improved NRW management and long term, sustainable water service provision.

The *National Water Resources Strategy III* (NWRS-3, 2023) builds on the second National Water Resource Strategy (NWRS-2, 2013). The purpose of the NWRS-3 is to ensure that national water resources are protected, used, developed, conserved, managed, and controlled in an efficient and sustainable manner. The NWRS-3 has been aligned to the National Development Plan (NDP), which seeks to eliminate poverty and reduce inequality by 2030. It also incorporates water supply and sanitation aspects in order to give effect to the National Water and Sanitation Master Plan (NW&SMP), which is subsidiary to, and operationalizes the NWRS-3. The NWRS-3 acknowledges that reducing water demand and increasing efficiency of water supply, meaningfully reduce water demand by effectively implementing WC/WDM measures, implement cost reflective water and sanitation tariffs, implementing the No Drop certification tool and implementing the War on Leaks Programme remain the key ongoing challenges related to reducing water losses, NRW and inefficiencies.

The **National Water and Sanitation Master Plan** (2018) recognises that building a water secure future will require proactive infrastructure management, effective water infrastructure operations and maintenance, and an overall reduction in future water demand, while considering infrastructure development and augmentation, if necessary. Management of NRW is central to the achievement of these objectives, based on the principle that measurement and monitoring of water resources is the foundation of sound decision making, allocation of resources, and effective implementation.

The *DWS Strategic Plan for fiscal years 2020/21 to 2024/25* (Vote 41) sets out a performance target approach to WC/WDM, highlighting its importance as one of the priority implementation areas for the DWS. The Strategic Plan also clarifies that set targets could be met using existing grant mechanisms, considering the impact of WC/WDM on bulk infrastructure requirements. The strategy includes a requirement for the development of individual sector WC/WDM strategies for agricultural, water services and industrial, mining, and power generation, with targets set for each water use sector.

2.2 BENCHMARKING STUDIES

The history of water loss benchmarking in South Africa over the past 20 years is summarised in **Figure 2**. The foundations of the current methodology for calculating and understanding NRW and water losses were established in 2002, in *Development of a pragmatic approach to benchmark water losses in potable water distribution systems in South Africa*, based on an adaptation of the IWA principles of calculating water losses. The first comprehensive national benchmark study, *The State of Non-Revenue Water in South Africa*, was published in 2012. Since then, several detailed assessments and updates were undertaken, including the No Drop assessment in 2015 and the No Drop Watch Report in 2023. The No Drop Watch Report is the last national water loss benchmarking study, based on preliminary 2021/2022 data and published in 2023. These studies have enabled the DWS and other stakeholders to better understand water losses, NRW, and water use efficiency in South Africa.

Figure 2: History of NRW benchmarking studies undertaken in South Africa

3 METHODOLOGY

3.1 STAKEHOLDER ENGAGEMENT AND COLLECTION OF WATER BALANCE DATA

The water balance data for this study was collected as part of the 2023 No Drop audits. Information and training sessions were well attended and expected deliverables and due dates were communicated. All communications and follow-up with municipalities were through the DWS Provincial Offices and standard IWA water balance templates were circulated. The process for completion of the templates was workshopped and discussed during several training sessions in the past 10 years, to entrench standardisation of information gathering and reporting.

3.2 WATER BALANCE REPORTING TEMPLATE

A two-page water balance reporting template was prepared for each municipality and is included in **Appendix A**. Cognisance should be taken of the following:

- All information was provided by the respective WSAs as part of the 2023 No Drop audits, unless otherwise indicated.
- The information was corrected, where necessary, to obtain a realistic water balance for each municipality. Typical corrections included incorrect calculations, changing units of measurement, extrapolating partial datasets to a full year, muddled monthly and annual datasets and gap filling.
- The water balance reporting template was divided into four sections to ease capturing and display of information. The four sections were input data, water balance calculations, KPIs and graphics.
- White cells required an input value, while yellow cells were calculated automatically.
- Each municipality had to provide only 11 values per year, and 8 values per month, to complete the reporting template.
- The values were categorised as basic information, such as the population served, and water balance information. Basic information was used to calculate KPIs. The water balance component followed the format of the IWA water balance.
- All volumes were reported in kl/annum (kl = m³ = 1 000 litres), per municipal fiscal year (July to June). For example, results for "Year ending Jun-21" means water supply and demand figures from July 2020 to June 2021.
- All underlined values were calculated using trends and / or averages based on previous years.
- Projected SIV with and without WC/WDM were based on the all town or reconciliation strategies, developed by the DWS Chief Directorate: Integrated Water Resource Planning. Further discussions, evaluation, interpretation, monitoring, and analysis are required to comment on the discrepancies and progress made with the implementation of WC/WDM.
- The provincial and district water balances were based on the sum of the municipalities located within the province or district.
- Unless plausible population and households served figures were provided by municipalities, figures were obtained from the DWS National Water Services Knowledge System (NWSKS) (<u>http://ws.dwa.gov.za/wsks/</u>). These figures are compiled by the DWS, in close collaboration with Statistics South Africa, and are used for all planning purposes, including the development of WSDPs. Any household with access to potable water, regardless of the reliability, was classified as served.

IWA Water Balance Diagram

An example of an IWA water balance is shown in **Figure 3**. The SIV unit consumption (182 l/c/d in the example) is based on SIV (2.127 million m^3 /annum) divided by the population served (N = 28 552), the authorised

consumption unit consumption (132 l/c/d in the example) is based on the authorised consumption (1.376 million m^3 /annum) divided by the population served (N = 28 552), and water losses (24%), revenue water (61.7%) and NRW (38.3%) are shown as percentages of the SIV. The Infrastructure Leakage Index (IILI) and losses per km of mains per day are real or physical loss indicators.

System Input Volume = 1.900 182 l/c/d	Authorised consumption = 1.376 132 l/c/d	Billed authorised = 1.372	Billed metered = 1.372	72.2% Revenue water = 1.372
		Apparent losses = 0.105	Apparent losses = 0.105	
	Water losses = 0.525 27.6%	Real Losses = 0.420 ILI = 3.8	Real Losses = 0.420 11.1 m³/km/day	Non-revenue water = 0.528 27.8%

Figure 3: IWA water balance (million m³/annum)

SIV and NRW Trend

NRW consists of all unbilled authorised consumption, and water losses. The NRW trend graph shows the increase or decrease in volume and percentage NRW. It also shows the projected demand with and without WC/WDM as included in the reconciliation or all town strategies, unless otherwise indicated.

Figure 4: SIV and NRW trend

Population and per Capita Consumption (I/c/d) Trend

The per capita consumption (I/c/d) is based on the SIV divided by the population served. The SIV includes commercial and industrial demand.

Figure 5: Population and I/c/d trend

Water Losses Trend

Water losses consist of apparent or commercial losses and real or physical losses, and typically include all losses on the municipal side (up to the consumer meter) of the reticulation system. However, some municipalities include internal plumbing losses as part of their water losses, although this should be indicated as unbilled authorised consumption. Therefore, the water losses trend graph indicates the increase or decrease in volume, apparent or commercial losses, and real or physical losses. The ILI, which is an indication of the physical leakage, is shown on the right-hand axis.

Figure 6: Water losses trend

3.3 DATA SUBMISSION STATISTICS

There has been a noticeable improvement in the quality and quantity of data for Provinces that have active data collection and collation programmes combined with regular engagements. Municipalities in these Provinces are requested to report on a regular basis at forums and reconciliation strategy progress meetings.

To differentiate the useability of data, data were categorised into one of three groups:

- **High confidence level**: Data sets are submitted on a regular basis, show trends, and are credible.
- **Medium confidence level**: One or more data sets were submitted in the past three years and seem credible, with few gaps and/or inaccuracies.
- Low confidence level: None or one data set was submitted in the past three years, and the data sets submitted are questionable, with considerable gaps and/or inaccuracies.

A total of 88 datasets (61%) were received from WSAs, which is the highest to date. Less than 50% of WSAs were able to submit water balance data in previous surveys. The confidence level of the data submitted varies between Provinces and municipal categories, as summarised in **Table 1**.

Province/ Category	WSA	Submissions	%	High	Medium	Low	% of SIV	% of Population
EC	14	7	50%	2	1	4	7.3%	8.8%
FS	19	10	53%	0	2	8	5.6%	5.8%
GT	9	8	89%	6	2	0	35.8%	29.3%
KZN	14	12	86%	11	0	1	19.5%	18.5%
LP	10	3	30%	1	2	0	7.0%	7.6%
MP	17	8	47%	2	2	4	6.5%	7.6%
NC	26	9	35%	5	3	1	2.4%	2.2%
NW	10	6	60%	0	2	4	5.5%	7.0%
WC	25	25	100%	21	2	2	10.4%	13.3%
Total	144	88	61%	48	16	24	100.0%	100.0%
Α	8	8	100%	7	1	0	53.3%	47.3%
B1	19	17	89%	11	2	4	17.1%	16.3%
B2	17	10	59%	8	1	1	4.3%	4.6%
B3	71	37	52%	14	10	13	6.6%	8.3%
B4	8	5	63%	0	2	3	2.8%	4.0%
C2	21	11	52%	8	0	3	15.9%	19.6%
Total	144	88	61%	48	16	24	100.0%	100.0%
%				33%	11%	17%		

Table 1: Summary of data submissions and confidence levels

The confidence levels include those for the WSAs that did not submit data, that is, when water balances were calculated, extrapolated, or estimated. The following is observed from the data submission statistics:

Eastern Cape – Data quality and frequency of submissions from the Eastern Cape are improving. Although few data sets are in the high and medium confidence category, which is a notable shift from the poor records reported in previous benchmarking studies. The Province still has substantial room for improvement in its journey to consistent and credible reporting. This prevents adequate trend analysis.

Free State – Record-keeping and reporting are severely deficient, with approximately 80% of the WSAs in the low confidence level category for the data submitted. This closely resembles the pattern of data submission in previous benchmarking studies, which is perpetuating an upward trend in NRW and water losses in the Province. Water balance information is estimated for most WSAs.

Gauteng – The Gauteng Province has maintained its record of good reporting practices and sound data management. All but one WSA submitted data for the study and regularly provide reports to the Provincial Office, enabling adequate trend analysis. The Provincial Office has a coherent and coordinated reporting

system in place and has continued its commendable efforts to maintain a sound relationship with the municipalities and monitoring activities. The efforts of the Provincial Office are strongly supported by Rand Water that also provide and require regular feedback through its Project 1600 programme.

KwaZulu Natal – The KwaZulu Natal Province has made excellent progress in the past few years through consistent efforts and regular forums to improve reporting. The Province continues to adhere to a strong and proactive reporting regime, with an 86% submission rate and all but one WSA submitting records with a high confidence rating. The Provincial Office, with the support of Umgeni Water, has demonstrated strong leadership in supporting municipal WC/WDM programmes and a consistent and effective monitoring programme.

Limpopo – Limpopo Province has historically had significant challenges with data collection and reporting on NRW. However, improvement is noted, with the water balance for the Province based on a 30% submission rate. Data quality remains a concern, with only one WSAs in the high confidence data category. The next step for the Province would be to promote the submission of the most basic water balance and improve data quality, to ensure that results are based on credible data that reflect the true state of NRW, particularly with the proportionately larger number of rural municipalities. This would facilitate an understanding of the true nature and extent of NRW in rural environments, which constitute a critical part of the NRW management picture in South Africa, and the water management and distribution discourse overall.

Mpumalanga – Mpumalanga Province presents a severely deficient reporting regime. The NRW water balance for the Province is based on a 47% submission rate, with most data sets in the low confidence category. The Province requires a robust and consistent reporting and monitoring programme for NRW initiatives. NRW reporting must be institutionalised in this Province to effect improvement.

Northern Cape – The Northern Cape Province shows significant variance in data quality across WSAs. Less than half of the municipalities (35%) submitted data, which a significant decrease from previous studies. The Province could benefit from improved data reporting efforts and a coherent system of monitoring and verification. A closer working relationship between the Provincial Office and the municipalities is required to improve data generation and reporting practices.

North West - The North West Province has seen significant growth in reporting in the past few years, driven by a few WSAs that have taken ownership of their WC/WDM programmes. However, the data quality for the Province remains in the medium and low confidence categories. The upward trend should be continued along with more robust and consistent data monitoring and verification programmes. NRW reporting must be institutionalised in this Province to ensure improvement.

Western Cape – The Western Cape Province has historically had an excellent NRW data reporting programme in place, and this continues to be the case. Most WSAs submitted NRW data in the high confidence category. This trend should be continued, as this level of credible data coming from the Province helps to create a realistic understanding of the nature and extent of NRW in South Africa.

It is positive to note that the three Provinces with the highest water use, namely, Western Cape, Gauteng, and KwaZulu-Natal, also provide the most credible information. These three Provinces represent 65.7% of the water use and 61.1% of the population served.

Category A - Metropolitan municipalities continue to report consistently and most can provide a water balance monthly. This is encouraging considering that metropolitan municipalities represent 53.3% of the total water use and 47.3% of the population served.

Category B1 and B2 - Most secondary cities and large municipalities can provide a water balance regularly, although there is considerable room for improvement in some Provinces. The secondary cities and large municipalities represent 21.4% of the total water use and 20.8% of the population served. These municipalities are of economic significance and should have the necessary budgets and resources to implement WC/WDM.

Category C2, B3 and B4 – Only 53% of the small and rural municipalities can provide an accurate water balance regularly. Reasons for this include lack of budget, difficultly measuring the supply due to the substantial number of boreholes, and large indigent consumer bases. These municipalities represent approximately 25.3% of the total water use and 31.9% of the population served.

Although the water balance calculation seems simple, the No Drop audits showed that it is the most complex part of the No Drop scorecard and took at least half a day per metro to analyse and interpret. Many WSAs state that the water balance calculations are too convoluted and that they do not have the time, skills, or resources to compile a water balance every month. Thus, the current focus is to encourage the submission of the most basic water balance regularly instead of focussing on accuracy. Although the DWS highlights and fixes typical errors and anomalies, analysing, interpreting, and improving the water balance will take time as the DWS and WSAs become better acquainted with the methodology and results. Providing feedback on the most basic water balance, helps to improve quality and credibility. The results from this study should also be seen as an indication of NRW and water losses in South Africa and improving the levels of confidence will require considerable time and resources.

3.4 ESTIMATED WATER BALANCES

Prior to the 2017 benchmark report, all reports calculated the national water balance based on extrapolation. The national water balance is highly influenced by and dependent on metro and secondary city data that have high confidence levels, while data for Category C2, B3 and B4 municipalities have low confidence levels and are poorly represented in the sample. The extrapolated results provided NRW figures between 35% to 40%, depending on the extrapolation methodology followed. To improve understanding of NRW and water losses in South Africa, the extrapolation method was substituted with a bottom-up approach, estimating a water balance for each municipality that could not provide information as explained in **Table 2**. The water balance was calculated and calibrated, if necessary, based on available information.

Municipal category	Average I/c/d consumption above RDP** level	Average I/c/d consumption below RDP level	Design guideline*	Billing efficiency
A	300	55	Very high development level = 260 to 480 l/c/d Yard connections = 55 l/c/d (typical)	90%
B1	250	55	High development level = 130 to 280 l/c/d Yard connections = 55 l/c/d (typical)	70%
B2	200	55	High development level = 130 to 280 l/c/d Yard connections = 55 l/c/d (typical)	50%
B3	150	55	Moderate to high development level = 80 to 145 l/c/d	
B4 and C2	100	25	Yard connections = 50 to 100 $l/c/d$ Standpipe = 10 to 50	10%

 Table 2: Water balance estimation guideline

* The Neighbourhood Planning and Design Guide (Part II) - Section J: Water supply (Department of Human Settlements, 2019) ** Reconstruction and Development Programme

The water balance components were calculated as follows:

• SIV = Average consumption x population served

The population served was obtained from the DWS NWSKS

• FBW = 6 kl x number of indigent households

The number of indigent households were obtained from the Division of Revenue Bill (2016/17 to 2018/19)

• Billed consumption = (Total households - indigent households - unserved households) x average consumption x billing efficiency

The number of households was obtained from the DWS NWSKS

Average consumption and billing efficiency were obtained by applying the specifications in Table 2

• NRW = SIV - FBW - billed consumption

In most cases, historical data, the calculated value, and the all town or reconciliation strategy results were similar. For larger municipalities and municipalities supplied by bulk service providers, the average consumption tended to be higher than expected. These communities are often supplied from large water supply schemes that are at a more advanced level of development.

The estimated water balance calculations require further refinement and improvement. There are also discrepancies between the estimated water balance and the all town and reconciliation strategy results. Reasons for these discrepancies include reference to different supply areas, and the inclusion of mining, irrigation, and other large water users in the water resource balance. Mining, irrigation, and other large water users are excluded from the IWA water balance unless supplied by the municipality.

3.5 BENCHMARKS AND TARGETS

Interpreting the results from the water balance calculation and KPIs is critical to assess the performance of the water supply system. The results vary significantly across WSAs, depending on the level of service and development, as shown in **Table 3**.

KPI	Metros	Local municipalities
Population	1 000 000 to 6 000 000	7 000 to 1 000 000
Length of mains (km)	5 000 to 15 000	50 to 5 000
Pressure (m)	30 to 60	30 to 60
Households / connection	1.0 to 3.0	1.0 to 1.5
Density of connections	40 to 80	30 to 70

 Table 3: Basic information typical range

Commercial or apparent losses are made up of unauthorised connections (theft), plus all technical and administrative inaccuracies associated with user metering and billing. If commercial losses were to be reduced, more revenue would be generated by and for the WSA. Traditionally, commercial losses were accepted as 20% of water losses but this assumption was revised in the Water Research Commission Report TT300/07 (WRC, Jan 2007) as shown in **Table 4**, which provides a more pragmatic approach to calculating commercial losses.

Unauthorised connections	%	Meter age and accuracy	Good water	Poor water	Data transfer	%
Very high	10%	> 10 years	8%	10%	Poor	8%
High	8%					
Average	6%	5-10 years	4%	8%	Average	5%
Low	4%					
Very low	2%	< 5 years	2%	4%	Good	2%

Source: WRC Report TT300/07, 2007

The percentage of commercial water losses is calculated as follows:

% Commercial water loss = \sum (unauthorised connections, meter age & accuracy, data transfer)

The No Drop performance based regulatory programme has adopted the key performance area criteria shown in **Table 5**, which are in line with international best practice. The key performance area criteria should be used to establish targets that are realistic based on the existing water balance. Depending on the performance of the WSA, an improvement of one or two levels over a 5-year period would be realistic.

Table 5: No Drop key performance areas

ILI (physical water loss) performance categories

>8	Extremely high physical water loss
6-8	Poor performance in physical water loss
4-6	Average physical water loss performance
2-4	Good physical water loss performance but some improvement may be possible subject to economic benefit
<2	Excellent physical water loss management

NRW (%) performance categories

>40%	Extremely poor non-revenue water management
30-40%	Poor non-revenue water performance
20-30%	Average performance with potential for marked improvement
10-20%	Good performance but some improvement may be possible subject to economic benefit
<10%	Excellent non-revenue water management

Water Use Efficiency (I/c/d) performance categories

>300	Extremely high per capita water use
250-300	Poor per capita water use
200-250	Average per capita water use with potential for marked improvement
150-200	Good per capita water use but some improvement may be possible subject to economic benefit
<150	Excellent per capita water use management

The results for most utilities fit into the performance categories and should be used to assess the performance of the WSA. If the results are not within these ranges, the water balance calculations should be checked or there should be reasons for the anomaly.

3.6 INTERMITTENT SUPPLY

There has been a noticeable increase in reported intermittent or rationed water supply by municipalities. Resolving intermittent supply is a prerequisite for an effective WC/WDM programme. Intermittent or rationed water supply should be avoided at all costs for the following reasons:

- Positive and negative (vacuum) pressures damage pipe seals and shorten the design life of the pipelines. These pipe seals can only be repaired through total pipe replacement.
- Air drawn into the distribution network during depressurisation is released mainly through consumer meters. Air passing through a consumer meter does not only damage the meter but also corrupts the meter reading. Corrupted meter readings will impair the metering and billing system and upset consumers.
- Dirt, sewage and other contaminants can enter the water distribution network when depressurised with a subsequent high risk of causing water borne diseases.

- Increased burst frequency and discomfort to consumers.
- Intermittent supply is expensive to operate and maintain through increased overtime and number of bursts.
- Infrastructure, such as isolating valves, is damaged when operated outside its intended use.
- Over time it becomes increasingly difficult for the municipality to pressurise the distribution system. It is almost impossible to fill pipes, reservoirs and towers when users leave taps open in anticipation of filling buckets, bathtubs and tanks.
- Users quickly adapt to their new supply conditions and inevitably revert to on-site storage to mitigate the inconvenience caused by the disruption in supply. Once on-site storage is established, consumers revert to their usual lifestyle, oblivious of the disruption in supply, with very little reduction in actual demand.
- Intermittent supply affects the local economy as businesses cannot plan and operate as intended.
- Intermittent supply impacts on KPIs. Unrealistically high or low values are often obtained if reliability of supply drops below 70%.

4 WATER BALANCE TRENDS

4.1 GENERAL

The water balance trends for all the Provinces are presented in the following sections. The following general comments apply to all the Provinces:

 The population served is a combination of the NWSKS data and figures provided by the municipalities. For the purposes of this study, population served at and above RDP standards, which is approximately 89% of the population, was used to calculate the per capita consumption. According to the NWSKS, only 68% of households have access to reliable water supply as summarised in **Table 6**. Very few municipalities include intermittent supply / reliability in their calculations, which can have a significant impact on the water balance and KPIs.

Province	Total Households	Access to Water Infrastructure Households	Access to Water Infrastructure Households %	Total At and Above RDP Level Water Infrastructure Households	Total At and Above RDP Level Water Infrastructure Households %	Reliable Water Households	Reliable Water Households %
Eastern Cape	1 748 487	1 312 702	75.08	1 214 441	69.46	784 442	44.86
Free State	1 049 686	1 035 143	98.61	1 028 244	97.96	737 615	70.27
Gauteng	5 985 580	5 951 793	99.44	5 919 358	98.89	4 926 896	82.31
KwaZulu-Natal	3 315 092	2 908 910	87.75	2 673 662	80.65	1 935 233	58.38
Limpopo	1 625 371	1 484 278	91.32	1 219 543	75.03	801 096	49.29
Mpumalanga	1 468 761	1 372 475	93.44	1 270 327	86.49	904 125	61.56
North West	1 469 867	1 384 000	94.16	1 238 953	84.29	872 843	59.38
Northern Cape	374 485	369 835	98.76	354 467	94.65	256 278	68.43
Western Cape	2 112 156	2 108 413	99.82	2 105 157	99.67	1 767 613	83.69
National	19 149 485	17 927 549	93.62	17 024 152	88.9	12 986 141	67.81

Table 6: Summary of households served (NWSKS, April 2023)

- The sudden increase in water balance data between 2015 and 2016 is because until 2015, only water balance information received from municipalities were included. From 2016, water balance was estimated for each municipality if no or poor data were received.
- The jump in 2016 population figures is because of corrections made by the DWS following the results from the 2016 Community Survey published by Statistics South Africa.
- Water balance information is continuously updated and improved, which means that the data shown in this report differs from the data presented in the previous benchmarking reports.
- Water losses and NRW have increased in most municipalities since the onset of the Covid-19 pandemic in early 2020. These increases are attributed to reduced payment levels, increased water use to curb the transmission of the virus, operations and maintenance budgets cuts, and lack of capacity in municipalities to undertake repairs due to ill health and deaths.

4.2 EASTERN CAPE PROVINCE

The water balance and trends for the Eastern Cape Province are based on 7 plausible data sets (50% of 14 WSAs). The water balance information is dominated by the Nelson Mandela Bay, Buffalo City, King Sabata Dalindyebo (Mthatha), and Enoch Mgijima (Komani, formerly Queenstown) municipalities, accounting for approximately 68% of the demand.

Figure 7: Eastern Cape Province water balance (million m³/annum)

Current results indicate NRW of 162.0 million m³/annum (50.3%) and corresponding water losses of 133.0 m³/annum (41.3%).

The NRW has improved slightly from 2020 until 2022. However, in 2023 NRW reached its highest level and half of the potable water supplied is not generating revenue. The billed metered and unmetered consumption has deteriorated in the past six years. The SIV has reduced slightly in parts of the Eastern Cape Province, and the estimated SIV is below the projected demand with WC/WDM. The lack of growth in the water demand is attributed to a combination of intermittent supply, imposed water restrictions, failing infrastructure and limited WC/WDM activities.

Figure 8: Eastern Cape Province SIV and NRW trend

The improved water use efficiency from 2019 is mainly because of the drought in Nelson Mandela Bay, intermittent supply, and a marginal variance in per capita consumption was observed in most other municipalities over the past six years, as shown below.

Figure 9: Eastern Cape Province population and I/c/d trend

Leakage levels remain an enduring challenge for the Eastern Cape Province with physical losses hovering around 103 million m³/annum over the past few years or 12.3m³/km/day. With water losses at approximately 133 million m³/annum and the ILI at 5.1, urgent review of the state of the water infrastructure and use across the Eastern Cape is required to address the unabated water losses that hamper the sustainability of the municipalities in the Province.

Figure 10: Eastern Cape Province water losses trend

4.3 FREE STATE PROVINCE

The Free State Province is based on a sample of 10 submissions (53% of 19 WSAs). The Province continues to have exceptionally poor levels of reporting, as was observed in previous assessments. The water balance information is dominated by the Mangaung, Matjhabeng, Dihlabeng, Maluti-a-Phofung, Moqhaka, and Metsimaholo municipalities, accounting for approximately 76% of the demand. The water balances for Dihlabeng, Maluti-a-Phofung, and Metsimaholo municipalities were estimated.

System Input Volume =	Authorised consumption = 127.113 111 l/c/d	Billed authorised = 117.228	Billed metered = 102.386 Billed unmetered = 14.842 Unbilled metered = 2.802	47.3% Revenue water = 117.228
247.978		Apparent losses = 25.007	Apparent losses = 25.007	
216 I/c/d	Water losses = 120.865	Real Losses = 95.858	Real Losses = 95.858	Non-revenue water = 130.749
	48.7%	ILI = 5.4	13.8 m ³ /km/day	52.7%

Figure 11: Free State Province water balance (million m³/annum)

The water balance indicates that NRW is at approximately 130.7 million m³/ annum (52.7%) and water losses at 120.9 million m³/annum (48.7%). The SIV has remained constant over the past five years and is below the projected demand with WC/WDM. The steady SIV is indicative of the severe droughts and water restrictions
imposed in the area, especially in Mangaung municipality. Intermittent supply and poor services delivery also contribute to the constant SIV.

Figure 12: Free State Province SIV and NRW trend

NRW has fluctuated between 50% and 53% over the past six years. The variability before 2016 is because of inconsistent water balance submissions by municipalities. The data credibility must be improved, and the reporting managed more effectively, before the accuracy and extent of NRW in the Province can be evaluated.

Figure 13: Free State population and I/c/d trend

The per capita consumption in the Free State Province shows a slight downward trend over the past six years. Current per capita consumption for the Province is 216 l/c/d, mainly because of the drought, imposed water restrictions, collapsing infrastructure, intermittent supply, and to a limited extent, water loss reduction intervention programmes. Given the level of service in the Province, there is significant scope for improvement in water use efficiency.

Figure 14: Free State water losses trend

The ILI in the Free State Province has improved slight in the past year, after it reached an unprecedented high of 5.8 in 2022. Real losses seem to be a main contributor to the high water losses in the Province and is estimated at 95.9 million m³/annum or 13.8 m³/km/day. The Province could benefit from a focused effort to repair and rehabilitate aging and deteriorating water infrastructure.

4.4 GAUTENG PROVINCE

The Gauteng Province water balance shows NRW of 667.5 million m³/annum (42.5%) and water losses of 545.3 million m³/annum (34.7%). This is based on 8 (89%) plausible data sets, which provides an accurate picture of the state of NRW in the Province. The water balance information for the Gauteng Province is dominated by the City of Johannesburg, City of Ekurhuleni, City of Tshwane, and Emfuleni municipalities, accounting for approximately 94% of the demand.

Figure 15: Gauteng water balance (million m³/annum)

The SIV, water losses and NRW have steadily increased over the past 10 years and municipalities have exceeded the projected demand with WC/WDM. More than 40% of the Province's water does not generate revenue and 27.5% is lost through physical losses. Given the importance of the Province as the economic hub of South Africa, water supply cannot be allowed to fail.

Figure 16: Gauteng SIV and NRW trend

The Province has been unable to reduce its water demand and water losses, as required by the reconciliation targets. The targets from the Vaal River System reconciliation strategy required that municipalities within this system had to reduce their demand by a minimum of 15%. This directive was issued almost 15 years ago, which was superseded by Project 1600 of Rand Water in 2017. Therefore, the municipalities must upscale their WC/WDM efforts rapidly to improve the security of supply. The SIV reduced in 2017 and 2018 with the enforcement of water restrictions due to the ongoing drought but returned to previous levels once the restrictions were lifted.

The per capita consumption for the Province shows a consistent trend until 2016, when water restrictions were imposed. WSAs have been able to lower the per capita consumption because of limited water loss reduction programmes, the population growth exceeding the growth in supply, and infrastructure reaching its design capacity or infrastructure failure. The per capita consumption is based on the total SIV and includes industrial and commercial use. City of Ekurhuleni is the metro with the highest number of wet industries in South Africa, with a current per capita consumption of 257 I/c/d.

Figure 17: Gauteng population and I/c/d trend

Gauteng Province has been unable to reduce the demand in the past 10 years, although water use efficiency seems to have improved over the past six years. The NRW levels are at an unprecedented high, which places increasing pressure on the already strained Integrated Vaal River Supply System. The increased ILI is attributed to the COVID-19 pandemic, gradual reduction in billed consumption, and increased real losses. However, it seems municipalities are slowly recovering from the COVID-19 pandemic with a slight improvement in the real loss indicators over the past year. In terms of the No Drop KPIs, an ILI above 8 indicates extremely high physical water losses. The urgent implementation of appropriate WC/WDM measures and exceeding the 15% reduction target should be fast tracked to safeguard the security of water supply in the Province. There is significant scope for improvement in efficiency and the reduction of SIV, NRW, and water losses.

Figure 18: Gauteng water losses trend

4.5 KWAZULU NATAL PROVINCE

The water balance trends for the KwaZulu Natal Province are based on 12 plausible data sets (86% of 14 WSAs). The water balance information is dominated by the eThekwini, Msunduzi, Newcastle, and City of uMhlathuze municipalities, accounting for approximately 68% of the demand. The KwaZulu Natal Provincial Office has done excellent work to improve the monitoring of water losses in the Province.

The current water balance shows NRW of 486.9 million m³/annum (56.7%) and water losses of 401.6 million m³/annum (46.8%). While the NRW and water losses have gone up excessively in the past 2 years, the level of data accuracy has increased significantly, which should lead to improved decision making and water security.

Figure 19: KwaZulu Natal water balance (million m³/annum)

The trend since 2016 provides a reasonable indication of the situation in the KwaZulu Natal Province. The SIV and NRW reduced in 2017 and 2018 with the introduction of water restrictions, but these savings were negated over the past four years, and NRW reached an unprecedented high of 56.7% in 2023. The increase is attributed to the COVID-19 pandemic, deteriorating infrastructure, and metering and billing challenges. The projected demand with and without WC/WDM is significantly lower than the actual demand because water demand projections are not available for some WSAs.

Figure 20: KwaZulu Natal SIV and NRW trend

Figure 21: KwaZulu Natal population and I/c/d trend

The per capita consumption in the KwaZulu Natal Province reached an all-time high in 2023. It is important that municipalities in KwaZulu Natal Province return to pre-COVID-19 water balance levels to prevent water restrictions. It is encouraging to note that WSAs are increasingly reporting water balance information per water supply system and per local municipality, thus improving the resolution of the NRW data in the Province.

The distribution losses have increased notably over the past five years, and the current ILI for the KwaZulu Natal Province is at a record high. The current ILI for the Province is poor, and signals the need for significant attention to monitoring, and investment in infrastructure repair, maintenance, and rehabilitation.

4.6 LIMPOPO PROVINCE

The water balance trends for the Limpopo Province are based on 3 plausible data sets (30% of 10 WSAs). Polokwane is the only secondary city included in the data set and together with the Greater Tzaneen, Ba-Phalaborwa, Thulamela (Thohoyandou), and Makhado municipalities account for 53% of the total demand.

Figure 23: Limpopo water balance (million m³/annum)

The water balance indicates NRW of 170.9 million m³/annum (56.0%) and water losses of 168.7 million m³/annum (55.2%). The water balance trends for the Limpopo Province have remained consistent over the past six years. However, the data have low confidence levels. The analysis highlights the need for aggressive WC/WDM implementation, given that NRW is at exceptionally high levels and impacts on the financial sustainability of municipalities, and water security.

Figure 24: Limpopo SIV and NRW trend

The water balance trend also indicates that water demand is below the projected demand with WC/WDM. This trend needs further investigation as the population served has remained constant and reliability of supply is below 50% in the Province. A proactive revenue enhancement programme will be required to address NRW and the financial sustainability of WSAs. While it is acknowledged that the Province comprises a large rural component, which impacts significantly on the metering and billing ability of municipalities, it is in the best interest of the Province to ensure effective metering and billing wherever feasible. Flat rate billing in areas where billed metered consumption is not immediately possible may be a practical first step while municipalities work to formalise connections, or work on an appropriate strategy to effect metering, billing, and cost recovery in the long term.

Figure 25: Limpopo population and I/c/d trend

The per capita consumption for the Limpopo Province has remained almost constant over the past six years because of the high number of estimated water balances. Given that the Province is mostly rural, the per capita consumption is high, considering the level of service and development in the Province. Water supply in these rural schemes is characterised by some users having an abundant supply and wasting water, while other users have limited access due to infrastructure failures, intermittent supply, and rationing. Improved reliability of water supply could encourage users to pay, which would discourage inefficient use. Effective tools to manage demand and improve efficiency could include community education and awareness, ideally extended to schools and commercial consumers. Measures such as pressure management could also help to reduce leakage during off peak periods and prolong the useful life of the distribution infrastructure and household plumbing fixtures.

Figure 26: Limpopo water losses trend

The levels of leakage and water losses have increased over the past two years. Current trends indicate a record high ILI of 6.8, which is classified as poor performance on the No Drop scorecard. Further data verification and monitoring is required to determine the true extent of the distribution losses, which could be improved through increased bulk metering and monitoring to verify the data. This will assist in developing a cogent and effective WC/WDM implementation strategy.

4.7 MPUMALANGA PROVINCE

The water balance trends for the Mpumalanga Province are based on 8 plausible data sets (47% of 17 WSAs). The water balance information is dominated by the four secondary cities of Govan Mbeki, Emalahleni, Nkomazi, and City of Mbombela, accounting for 54% of the demand. The three large rural municipalities of Dr JS Moroka, Thembisile Hani, and Bushbuckridge account for 20% of the demand. Together, these seven municipalities account for 74% of the demand in the Province and should be the focus of ensuring water security and economic growth in the Province. The data are poor in the Province, and there are no active reporting systems in place, with 50% of data sets falling in the low confidence category. The status quo is untenable and requires urgent action to improve water security and sustainability through the development of a WC/WDM strategy and implementation programme.

Figure 27: Mpumalanga water balance (million m³/annum)

The water balance indicates NRW of 153.3 million m³/annum (54.0%) and water losses of 131.2 million m³/annum (46.3%). The trends in the Province show a steady increase in SIV and NRW over the past eight years and is currently at its highest level in 10 years.

Figure 28: Mpumalanga SIV and NRW trend

One of the priority areas for the Mpumalanga Province will be to improve the quality of data and frequency of reporting, to develop coherent trends that can provide sound intelligence on the nature and extent of NRW and water losses in the Province. The SIV is much higher than the projected demand with and without WC/WDM because of the unavailability of demand projections for some municipalities. The Province must accelerate and upscale its WC/WDM programme implementation to curb the growing water losses and NRW in the Province. Key demand centres such as City of Mbombela, Govan Mbeki, Emalahleni, and Steve Tshwete municipalities require ongoing demand management programmes to significantly reduce water losses and pave the way for the other municipalities to do the same.

Figure 29: Mpumalanga population and I/c/d trend

Per capita consumption has remained constant over the past six years due to the high number of estimated water balances and lack of reporting by WSAs. The per capita consumption is good compared with the No Drop scoring criteria, but there is room for improvement considering the high number of rural schemes and level of services in the Province.

Figure 30: Mpumalanga water losses trend

The water loss trend for the Mpumalanga Province shows a steady increase in NRW, SIV, and water loss between 2016 and 2023. The billed metered consumption shows a gradual reduction which is cause for concern, and the ILI is at an all-time high of 5.4, which is similar to the trend in the other Provinces.

4.8 NORTH WEST PROVINCE

The water balance for the North West Province, indicates NRW of 121.1 million m³/annum (50.4%) and water losses of 116.1 million m³/annum (48.4%). These trends are based on 6 datasets (60% of 10 WSAs). The water balance information is dominated by the Madibeng, Rustenburg, Mahikeng, City of Matlosana, and JB Marks municipalities, accounting for 66% of the water demand. Only Rustenburg and JB Marks, submitted water balance information, but the results are questionable and further improvements will be required. Both the NRW and water losses indicate poor performance in terms of the No Drop scoring criteria, and WSAs must enhance revenue to assist in improving sustainability and extending the delivery of services to un-serviced communities, given the imperatives of the NDP.

Figure 31: North West water balance (million m³/annum)

Figure 32: North West SIV and NRW trend

Water losses and NRW has remained constant between 2016 and 2023 with slight decreases observed between 2019 and 2021. The SIV is above the projected demand with and without WC/WDM because there are no strategies available for certain municipalities, and in other instances, due to data discrepancies.

5 000 250 4 000 200 Litres / capita / day Population ('000) 3 000 150 3 786 174 <mark>3 618</mark> 178 100 2 000 3 493 179 3 563 178 3 180 184 3 303 182 3 426 184 187 3 068 126 3 095 3 019 984 1 000 50 87 86 0 0 Jun-13 Jun-14 Jun-18 Jun-19 Jun-20 Jun-21 Jun-23 Jun-15 Jun-16 Jun-17 Jun-22 Litres / capita / day Population served

Alignment between the water balance data and all town strategy results will be required to address this problem.

Figure 33: North West population and I/c/d trend

The per capita consumption in the North West Province has shown a slight improvement from its peak of 187 l/c/d in 2016. The improvement warrants further investigation due to the high number of estimated water balances in the Province and the poor reliability of the supply system.

Figure 34: North West water losses trend

The North West Province has been unable to reduce its demand or water losses for the past six years despite an increase in billed metered consumption. WSAs must reduce their physical losses to reap the benefits of the revenue enhancement programmes. Real losses are at an all time high with an ILI of 8.1 or 10.8 m³/km/day.

4.9 NORTHERN CAPE PROVINCE

The water balance and trends for the Northern Cape Province are based on 6 plausible data sets (35% of 26 WSAs). The water balance information is dominated by the Dawid Kruiper and Sol Plaatje municipalities, accounting for approximately 52% of the demand. Both municipalities have been able to submit water balance information for the past two years.

The current water balance indicates NRW of 59.4 million m³/annum (55.3%) and water losses of 57.0 million m³/annum (53.1%).

Figure 35: Northern Cape water balance (million m³/annum)

The current water balance trends indicate that the SIV and NRW have been steadily increasing over the past few years. The NRW and water losses in excess of 55% are cause for concern, particularly given the extremely dry climatic conditions in the Province. Robust WC/WDM programmes will be required in all the municipalities to reduce water losses and secure the sustainability of water supply. The SIV is below the projected demand with WC/WDM due to the high projections in municipalities that include mine water use. Alignment of the all-town strategies and the actual water balance information are required to assess if the targets are realistic and to measure progress made with the implementation of water loss reduction and efficiency programmes. NRW increased significantly in the past two years and peaked at 55.4% in 2021, a trend that has also been noticed in other provinces. This peak is attributed to the COVID-19 pandemic.

Figure 36: Northern Cape SIV and NRW trend

Figure 37: Northern Cape population and I/c/d trend

The current per capita consumption of 247 l/c/d is high in terms of the No Drop scoring criteria and level of service in the Province. It will be necessary for the municipalities to collectively assess their reconciliation targets to ensure that the demand and population growth pressures do not exceed available supply.

Figure 38: Northern Cape water losses trend

The ILI peaked at 8.6 in 2021, with signs of improvement in 2022 and 2023. The ILI reflects poor performance by WSAs that must increase their efforts to reduce visible leakage.

4.10 WESTERN CAPE PROVINCE

The water balance and trends for the Western Cape Province are based on 26 plausible data sets (100% of 26 WSAs). The Western Cape Province is commended for being the only Province that has a 100% water submission rate. The water balance information is dominated by the City of Cape Town, Drakenstein, Stellenbosch, Saldanha Bay, Breede Valley, and George municipalities, accounting for approximately 83% of the demand. The water balance data quality for the Western Cape Province is exceptionally good and is testament to the consistent efforts of the municipalities, effectively promoting and implementing WC/WDM and NRW management measures. The DWS Provincial Office is also lauded for its efforts to implement active monitoring and reporting mechanisms and issuing directives if municipalities do not report.

The water balance for the 26 data sets shows NRW of 126.7 million $m^3/annum$ (27.9%) and water losses of 116.2 million $m^3/annum$ (25.5%).

Figure 39: Western Cape water balance (million m³/annum)

It is commendable that municipalities in the Western Cape Province managed to reduce their SIV in 2018 and 2019 by approximately a third, without using intermittent supply to curb the impact of the severe drought and the looming "day zero". The SIV and NRW have increased steadily since then, but the trend remains well below the projected demand with WC/WDM. The consistently low NRW can also be attributed to the continuous execution, monitoring, and reporting, by both the DWS Provincial Office and municipalities.

Figure 40: Western Cape SIV and NRW trend

The per capita consumption for the Western Cape Province consistently decreased between 2015 and 2019, with record lows during 2018 and 2019. The per capita consumption increased since 2029 but continues to track well below the population growth trends, indicating high water use efficiency in the Province.

Figure 41: Western Cape population and I/c/d trend

Based on the current trends, water losses have increased considerably in the past two years with the ILI peaking at 3.8. Given the notable gains of the past few years, the municipalities in the Province should continue their efforts, avoiding complacency in keeping up the maintenance and management of the water supply infrastructure, and mitigate the devastating impact of changing climatic conditions observed in the Province in recent times.

Figure 42: Western Cape water losses trend

4.11 NATIONAL WATER BALANCE

The national water balance indicates a SIV of 4 389.3 million m³/annum, NRW of 2078.6 million m³/annum (47.4%) and water losses of 1 789.9 million m³/annum (40.8%). NRW and water losses have increased by a notable 5.9% and 4.3% respectively from June 2016. However, the greatest increase was in the past two years, attributed to the impact of the COVID-19 pandemic. The fluctuation between 2016 and 2019 was generally less than 1%.

There has been a noticeable increase in billed unmetered consumption because of incorporating FBW supply in the estimated water balances, especially for rural municipalities. Unbilled unmetered consumption remains lower than expected, considering the high number of unbilled properties in South Africa. Municipalities must correct their water balance calculations and show any water use after an accepted connection as authorised consumption, and not as water loss. An improved and increased estimation of the unbilled unmetered consumption will increase the authorised consumption and reduce water losses. It will also move the focus from leak detection and repair to improved metering and billing.

Figure 43: National water balance (million m³/annum)

National NRW and water loss trends show a steady increase in NRW over the past 10 years and SIV projections with WC/WDM have been exceeded. The figures are dominated by Category A, B1 and B2 municipalities, some of whom have made significant strides in improving NRW management, reducing water losses, and managing the demand in line with reconciliation strategy targets. There is significant scope for improvement of NRW and all municipalities would benefit from targeted demand management programmes, including community education and awareness, leak repair, infrastructure refurbishment, pressure management, and installation of bulk meters, amongst other measures.

Figure 44: National SIV and NRW trend

National trends suggest that the per capita consumption has remained constant over the past 10 years, which is commendable. However, WC/WDM efforts must be elevated considering the level of service and inefficiencies, and that South Africa is one of the 30 driest countries in the world. Nonetheless, the per capita consumption is significantly lower than the previous national average of 237 I/c/d presented in June 2016 because of the prevailing droughts in parts of South Africa, deteriorating infrastructure and service delivery. The subsequent water restrictions and WC/WDM interventions had a significant impact on the SIV, especially in the Western Cape.

Figure 45: National population and I/c/d trend

The ILI deteriorated drastically from 2016 to date, showing signs of improvement in 2017 and 2018. The ILI of 7.0 indicates poorly managed physical losses. The COVID-19 pandemic has played havoc with municipal water losses and this trend is expected to improve once municipalities have returned to normal, eliminated the leak repair back-logs, and improved revenue collection.

Figure 46: National water losses trend

The results indicate increased NRW, water losses, and ILI, but a significant decrease in the national per capita consumption. Given the increases on three key NRW metrics, WC/WDM must be implemented as a matter of urgency in all Provinces, especially considering that several Provinces have NRW and water losses above 50%. There is significant scope for improvement in reporting levels, data accuracy and a reduction in SIV, NRW, water losses and improved efficiency across South Africa. Only continuous monitoring and analyses

will provide a credible benchmark against which progress made with the implementation of WC/WDM can be measured. Continuous monitoring should also influence interventions required to manage demand, water losses, and NRW.

5 **BENCHMARKS**

5.1 INTRODUCTION

SIV, volume NRW, percentage NRW, I/c/d and ILI benchmarks for South Africa are shown in the following sections. For the last three indicators, the national average and the national weighted average are shown. In all previous benchmark studies, the weighted average was used. The weighted average is dominated by the metropolitan and secondary city WSAs, as shown in the calculations below:

%NRW average = AVERAGE (%NRW1, [%NRW2], ...) (average of the averages)

%NRW weighted average = SUM VOLUME (NRW1, [NRW2],) X 100 SUM VOLUME (SIV1, [SIV2], ...)

5.2 SENSITIVITY ANALYSIS

To assess the impact of the estimated water balances on the national KPIs, the water balance information was divided into various groups, as summarised in **Table 7**. The percentage NRW is lower in the metros than in the reporting Provinces, although the l/c/d are much higher in the metros. The percentage NRW is much higher than the national average in the Provinces that report poorly, with estimated water balance. However, the l/c/d is much lower than the national average in these Provinces. Therefore, the estimated water balances increase the national percentage NRW by approximately 5.5% and reduces the l/c/d by approximately 23 l/c/d. The estimated water balances increases the national figures, and it is highly unlikely that the NRW in reporting municipalities would be lower than in non-reporting municipalities.

Table 7: Impact of estimated water balances

Group	SIV (m³/annum)	% of national	NRW (m³/annum)	%NRW	l/c/d	Population
Metropolitan municipalities	2 338 765 117	53%	981 791 047	42.0%	250	25 670 841
Reporting Provinces (WC, GT, KZN)	2 882 351 541	66%	1 281 133 336	44.4%	238	33 183 957
Reporting Provinces (WC, GT, KZN) including metros in other Provinces	3 129 671 940	71%	1 391 882 940	44.5%	237	36 209 531
Poor reporting Provinces (LP, FS, EC, NC, NW, MP)	1 506 957 018	34%	797 419 617	52.9%	195	21 140 809
National	4 389 308 559	100%	2 078 552 953	47.4%	218	54 331 818

5.3 SYSTEM INPUT VOLUME

The SIV distribution per municipal category is shown in **Figure 47** and per WSA in **Figure 48**. The metropolitan municipalities are by far the biggest water users in South Africa, followed by Category B1, B2 and B3 municipalities, respectively. The results are comparable to previous assessments. The rural B4 and C2 municipalities' estimated water use is higher than previous assessments. Category A, B1 and B2 municipalities represent 74% of the total water use while the Gauteng, Western Cape, and KwaZulu Natal Provinces make up 66% of the total estimated use.

Figure 47: SIV distribution per municipal category

Figure 48: SIV distribution per WSA

5.4 VOLUME NON-REVENUE WATER

The volume NRW for the municipal categories is shown in **Figure 49** and per WSA in **Figure 50**. The volume NRW in the Category A, B1 and B2 municipalities accounts for almost two thirds of all NRW in South Africa and should be a focus area of the national WC/WDM programme. The Gauteng and KwaZulu Natal Provinces account for half of the national volume NRW.

Figure 49: Volume NRW distribution per municipal category

Figure 50: Volume NRW distribution per WSA

5.5 PERCENTAGE NON-REVENUE WATER

The percentage NRW distribution per municipal category and per WSA is shown **Figure 51** and **Figure 52**. In all municipal categories, the performance varies from very poor to very good. Category A and B2 municipalities are performing better, and it is assumed that they have sufficient budget and resources to implement effective WC/WDM programmes. Category B1, B3 and rural municipalities face significant budget, cost recovery, and resource challenges, and have higher NRW. The national average of 49.1% is higher than the weighted average of 45.1% because it is not influenced by the size of the metropolitan municipalities which have lower NRW.

Figure 51: Percentage NRW distribution per municipal category

Figure 52: Percentage NRW distribution per WSA

5.6 LITRES PER CAPITA PER DAY

The water use efficiency, using I/c/d, are shown **Figure 53** and **Figure 54**. The metropolitan municipalities have the highest per capita consumption and the highest number of wet industries. Category B1 and B2 municipalities have slightly lower consumption figures, which are above the national average of 189 I/c/d. The national weighted average of 218 I/c/d is dominated by the Category A and B1 municipalities. The I/c/d in some municipalities is extremely high and needs further investigation to ensure the population served figures are accurate.

Figure 53: Litres per capita per day distribution per municipal category

Figure 54: Litres per capita per day per WSA

5.7 INFRASTRUCTURE LEAKAGE INDEX

The ILI for the municipal categories is shown in **Figure 55** and for WSAs and **Figure 56**. Physical water losses are the highest in Category A and B1 municipalities and should be addressed through active leak detection and repair programmes. The high ILIs in the Category B1 municipalities need further investigation and might be because of average pressure, length of mains, or reporting unbilled consumption as water loss errors.

Figure 55: ILI distribution per municipal category

Figure 56: ILI per WSA

5.8 BENCHMARK SUMMARY

The weighted benchmarks for the Provinces are summarised in **Table 8**. The Western Cape is the best preforming Province in South Africa with lowest %NRW, I/c/d and ILI. Gauteng Province is the worst performing Province with the highest I/c/d, ILI and volume NRW. However, Gauteng Province has the second lowest percentage NRW. Limpopo Province has the highest percentage NRW in South Africa. It is concerning that seven Provinces' percentage NRW is above the national average.

Province	SIV	RW	NRW	%NRW	l/c/d	ILI
EC	322 340 566	160 335 729	162 004 837	50.5%	180	4.7
FS	247 977 565	117 228 256	130 749 310	60.6%	196	6.6
GT	1 569 696 786	902 178 874	667 517 912	46.4%	279	7.5
KZN	858 026 407	371 100 538	486 925 869	59.2%	187	7.4
LP	305 413 154	134 471 525	170 941 629	51.6%	197	7.5
MP	283 727 455	130 423 536	153 303 919	58.4%	179	7.1
NC	107 474 516	48 072 109	59 402 407	48.5%	193	6.1
NW	240 023 761	119 006 246	121 017 515	52.1%	167	11.8
WC	454 628 348	327 938 793	126 689 555	26.9%	164	2.8
National	4 389 308 559	2 310 755 606	2 078 552 953	47.4%	218	7.0

Table 8: Province benchmark summary

The average benchmarks for the Categories are summarised in **Table 9** with a breakdown of Category A (metropolitan municipalities) provided in **Table 10**. City of Cape Town is the best performing metro with the lowest %NRW, I/c/d and ILI. eThekwini is the worst performing metro with the highest %NRW, I/c/d and ILI. City of Johannesburg has the highest SIV and volume NRW.

Category	SIV	Revenue water	NRW	%NRW	l/c/d	ILI
A	2 338 765 117	1 356 974 071	981 791 047	41.4%	239	7.6
B1	751 719 678	382 045 505	369 674 174	43.8%	225	8.5
B2	189 763 240	115 253 845	74 509 395	39.5%	221	4.3
B3	290 197 411	132 970 429	157 226 983	48.6%	176	5.5
B4	121 652 361	51 095 113	70 557 248	62.1%	152	11.9
C2	697 210 751	272 416 644	424 794 107	61.2%	169	5.8
Total	4 389 308 559	2 310 755 606	2 078 552 953	47.4%	218	7.0

Table 9: Category benchmark summary

Table 10: Category A (metro) benchmark summary

Metro	SIV	Revenue water	NRW	%NRW	l/c/d	ILI
Buffalo City	65 166 097	40 626 442	24 539 655	37.7%	214	4.7
City of Cape Town	312 826 977	220 753 930	92 073 047	29.4%	161	4.0
City of Ekurhuleni	368 351 408	254 395 814	113 955 594	30.9%	257	6.4
City of Johannesburg	634 461 668	328 709 771	305 751 897	48.2%	280	9.3
City of Tshwane	361 666 588	243 780 416	117 886 172	32.6%	239	7.2
eThekwini	414 138 078	172 763 345	241 374 733	58.3%	298	16.4
Mangaung	80 813 586	43 279 273	37 534 313	46.4%	261	5.4
Nelson Mandela Bay	101 340 716	52 665 080	48 675 636	48.0%	199	7.4
Category A	2 338 765 117	1 356 974 071	981 791 047	41.4%	239	7.6

6 FINANCIAL ANALYSIS

In *The State of Non-Revenue Water in South Africa* (WRC, 2012) the value of NRW is estimated at R 7.2 billion per annum using production tariffs of between R 3.00/kl for Category B4 and R 5.00/kl for Category A municipalities. The DWS First Order Assessment of the status of water loss, water use efficiency and NRW in municipalities (2014) used R 6.00/kl to calculate the potential savings. The R 6.00/kl was based on the Water Services Tariffs Report for 2012/13 (DWA, 2013). The results from these studies gave a high-level understanding of the potential financial benefit of implementing WC/WDM in the municipal environment.

The Medium Term Revenue and Expenditure Framework (MTREF) submitted by municipalities on an annual basis provides valuable information on the revenue and expenditure for the current year, past three years, and projected three years. This financial analysis is an attempt at aligning the actual water revenue and expenditure with the IWA water balance to assess water cost and potential revenue. Focus was placed on Table A2 Budgeted Financial Performance (revenue and expenditure by functional classification) and Table SA1 Supporting detail to 'Budgeted Financial Performance'. Examples are shown in **Table 11** and **Table 12**.

Functional Classification Description	2016/17	2017/18	2018/19	Current Year 2019/20			2020/21 Medium Term Revenue & Expenditure Framework		
R thousand	Audited Outcome	Audited Outcome	Audited Outcome	Original Budget	Adjusted Budget	Full Year Forecast	Budget Year 2020/21	Budget Year +1 2021/22	Budget Year +2 2022/23
Revenue - Functional									
Trading services	195 102	217 956	247 828	288 792	295 383	295 383	359 027	377 858	397 677
Energy sources	125 614	126 679	151 759	176 205	183 874	183 874	224 902	236 709	249 136
Water management	29 451	58 974	62 164	73 663	71 411	71 411	80 282	84 497	88 933
Waste water management	25 024	14 810	15 674	18 644	18 576	18 576	32 197	33 887	35 666
Waste management	15 012	17 493	18 232	20 279	21 523	21 523	21 646	22 765	23 941
Expenditure - Functional									
Trading services	245 051	369 576	196 708	373 086	332 303	332 303	435 000	461 230	489 382
Energy sources	166 734	238 243	181 881	242 379	221 869	221 869	306 793	323 900	341 352
Water management	39 197	55 886	14 687	72 200	60 726	60 726	66 247	69 724	73 385
Waste water management	12 871	47 670	140	26 693	22 258	22 258	26 132	27 504	28 948
Waste management	26 248	27 776	-	31 814	27 449	27 449	35 828	40 102	45 697
Surplus/(Deficit) for the year	-49 949	-151 620	51 120	-84 294	-36 920	-36 920	-75 973	-83 372	-91 705

Table 11: MTREF Table A2 Budgeted Financial Performance

Table 12: MTREF Supporting Table SA1 Supporting detail to 'Budgeted Financial Performance'

Description	2016/17	2017/18	2018/19	Current Year 2019/20				2020/21 Exp	0/21 Medium Term Revenue & Expenditure Framework		
R thousand	Audited Outcome	Audited Outcome	Audited Outcome	Original Budget	Adjusted Budget	Full Year Forecast	Pre-audit outcome	Budget Year 2020/21	Budget Year +1 2021/22	Budget Year +2 2022/23	
REVENUE ITEMS:											
<u>Service charges - water</u> revenue											
Total Service charges - water revenue	29 379	59 056	63 242	95 648	100 256	100 256		81 141	85 401	89 884	
less Revenue Foregone (in excess of 6 kilolitres per indigent household per month)											

Description	2016/17	2017/18	2018/19	Current Year 2019/20				2020/21 I Exp)/21 Medium Term Revenue & Expenditure Framework		
R thousand	Audited Outcome	Audited Outcome	Audited Outcome	Original Budget	Adjusted Budget	Full Year Forecast	Pre-audit outcome	Budget Year 2020/21	Budget Year +1 2021/22	Budget Year +2 2022/23	
less Cost of Free Basis Services (6 kilolitres per indigent household											
per month)	-	-	1 078	28 845	28 845	28 845		1 172	1 234	1 299	
Net Service charges - water revenue	29 379	59 056	62 164	66 804	71 411	71 411	-	79 969	84 167	88 586	

The Water Management Functional Expenditure divided by the SIV provides an indication of the cost of water supply, as shown in **Figure 57**. Based on the functional expenditure and SIV of 127 WSAs, the average cost of supplying water is R 13.70/kl. This ranges from R 17.32/kl for metropolitan municipalities to R 12.06/kl for Category B3 municipalities. The cost of supplying rural municipalities (Categories B4 and C2) appears to be the highest, ranging from R 14.26/kl to R 17.64/kl. This is a meaningful change from previous assessments that suggested that the cost of supplying water in rural schemes is less than in large municipalities. The higher cost is justified, considering that these schemes often consist of many small systems with boreholes, which are expensive to operate.

Figure 57: Cost of water supply (functional expenditure per kilolitre)

The functional revenue per kilolitre is shown in **Figure 58** and is based on the water revenue generated by the municipality plus national government subsidies and grants. The national average is R 34.55/kl and increases to R 47.45 for Category C2 municipalities. The rate for rural municipalities is very high because of large grants versus small volume billed consumption.

Figure 58: Functional revenue per kilolitre

The Service Charges - Water Revenue divided by the revenue water provides an accurate indication of the revenue generated from water services by the municipality, as shown in **Figure 59**. The national average charged for water services is R 18.95/kl for every kilolitre supplied at R 13.07/kl. The national average charged for water services is R 18.95/kl excludes government subsidies and grants.

Figure 59: Service charge per kilolitre

The functional revenue per kl and the service charges – water revenue per kl is shown in **Figure 60**. The results indicate that some municipalities are highly subsidised and highly dependent on equitable share to remain sustainable.

Figure 60: Functional revenue versus service charges - water revenue (per kilolitre)

Using the average tariffs from **Figure 57** and **Figure 59**, it is possible to calculate the financial balance for South Africa as shown in **Table 13**. The national average tariff was used for the Provinces.

Province	SIV (m³/annum)	SIV @ R13.07 (R'000/annum)	RW (m³/annum)	RW @ R18.95 (R'000/annum)	NRW (m³/annum)	NRW @ R13.07 (R'000/annum)	Surplus/ deficit (R'000/annum)
EC	322 340 566	R4 415 349	160 335 729	R3 038 447	162 004 837	R2 219 106	-R1 376 902
FS	247 977 565	R3 396 741	117 228 256	R2 221 537	130 749 310	R1 790 975	-R1 175 204
GT	1 569 696 786	R21 501 355	902 178 874	R17 096 767	667 517 912	R9 143 511	-R4 404 587
KZN	858 026 407	R11 753 053	371 100 538	R7 032 552	486 925 869	R6 669 801	-R4 720 502
LP	305 413 154	R4 183 481	134 471 525	R2 548 307	170 941 629	R2 341 520	-R1 635 174
MP	283 727 455	R3 886 435	130 423 536	R2 471 595	153 303 919	R2 099 923	-R1 414 840
NC	107 474 516	R1 472 162	48 072 109	R910 992	59 402 407	R813 681	-R561 170
NW	240 023 761	R3 287 792	119 006 246	R2 255 231	121 017 515	R1 657 671	-R1 032 560
WC	454 628 348	R6 227 397	327 938 793	R6 214 614	126 689 555	R1 735 365	-R12 783
Total	4 389 308 559	R60 123 764	2 310 755 606	R43 790 042	2 078 552 953	R28 471 552	-R16 333 723
А	2 338 765 117	R40 502 671	1 356 974 071	R25 441 080	981 791 047	R17 002 631	-R15 061 592
B1	751 719 678	R9 343 301	382 045 505	R6 356 835	369 674 174	R4 594 767	-R2 986 466
B2	189 763 240	R2 809 651	115 253 845	R2 529 069	74 509 395	R1 103 193	-R280 582
B3	290 197 411	R3 499 375	132 970 429	R2 631 880	157 226 983	R1 895 938	-R867 495
B4	121 652 361	R1 734 638	51 095 113	R878 175	70 557 248	R1 006 074	-R856 463
C2	697 210 751	R12 297 376	272 416 644	R4 409 610	424 794 107	R7 492 502	-R7 887 766
Total	4 389 308 559	R70 187 012	2 310 755 606	R42 246 648	2 078 552 953	R33 095 104	-R27 940 364

Table 13: Monetary value of water SIV, Revenue water and NRW

The results show that all Provinces and categories operate at a deficit if government grants are excluded from the revenue tariff, which enforces the policy that water tariffs should be cost effective and in accordance with the Revision of the Norms and Standards for Setting Water Services Tariffs (Government Notice 1153,

Government Gazette 39411 of 13 November 2015) in terms of Section 10 of the Water Services Act (No. 108 of 1997).

Using the average and category tariffs, the estimated cost to supply water in South Africa is between R 60 and R 60 billion per annum and revenue of between R 42 and R 44 billion is generated from water sales. The value of NRW is between R 28 and R 33 billion at R 13.07/kl, which is higher than previous estimates. The increase is due to above inflation water tariff increases from water boards and the under estimation of water supply costs to rural municipalities.

Using the average tariffs, the potential impact of increasing revenue water and reducing the SIV is shown in **Table 14**. Approximately R 1 billion per annum could be saved if the SIV is reduced by 2%, and municipalities would generate nearly R 1 billion per annum for every 2% increase in revenue. The nett benefit could be R 10 billion per annum if revenue is increased by 10% and the SIV is reduced by 10%. Reducing the SIV by 10% and increasing the revenue by 10% would reduce the national NRW figure to 35.7% and the per capita consumption to 195 l/c/d as shown in **Table 15**.

	Percentage increase in billed consumption @ R 18.95												
		0%	2%	4%	6%	8%	10%	12%	14%	16%			
	0%	R 0	R 881	R 1 762	R 2 644	R 3 525	R 4 406	R 5 287	R 6 169	R 7 050			
	2%	R 1 160	R 2 041	R 2 922	R 3 804	R 4 685	R 5 566	R 6 447	R 7 329	R 8 210			
Percentage reduction	4%	R 2 320	R 3 201	R 4 082	R 4 963	R 5 845	R 6 726	R 7 607	R 8 488	R 9 370			
in system	6%	R 3 480	R 4 361	R 5 242	R 6 123	R 7 005	R 7 886	R 8 767	R 9 648	R 10 529			
input	8%	R 4 639	R 5 521	R 6 402	R 7 283	R 8 164	R 9 046	R 9 927	R 10 808	R 11 689			
@ R13.70	10%	R 5 799	R 6 681	R 7 562	R 8 443	R 9 324	R 10 206	R 11 087	R 11 968	R 12 849			
e	12%	R 6 959	R 7 840	R 8 722	R 9 603	R 10 484	R 11 365	R 12 247	R 13 128	R 14 009			
	14%	R 8 119	R 9 000	R 9 882	R 10 763	R 11 644	R 12 525	R 13 406	R 14 288	R 15 169			
	16%	R 9 279	R 10 160	R 11 041	R 11 923	R 12 804	R 13 685	R 14 566	R 15 448	R 16 329			

Table 14: Potential impact of reducing NRW

Table 15: Target water balance KPIs

% Reduction	SIV (m3/annum)	% Increase	Billed consumption (m³/annum)	NRW (m³/annum)	%NRW	l/c/d
0%	4 389 308 559	0%	2 310 755 606	2 078 552 953	47.4%	217
2%	4 301 522 388	2%	2 356 970 718	1 944 551 670	45.2%	213
4%	4 213 736 217	4%	2 403 185 830	1 810 550 386	43.0%	208
6%	4 125 950 045	6%	2 449 400 943	1 676 549 103	40.6%	204
8%	4 038 163 874	8%	2 495 616 055	1 542 547 820	38.2%	200
10%	3 950 377 703	10%	2 541 831 167	1 408 546 536	35.7%	195
12%	3 862 591 532	12%	2 588 046 279	1 274 545 253	33.0%	191
14%	3 774 805 361	14%	2 634 261 391	1 140 543 970	30.2%	186
16%	3 687 019 190	16%	2 680 476 503	1 006 542 686	27.3%	182

7 CONCLUSIONS

The following conclusions are drawn from the assessment:

- A total of 88 datasets (61%) were received from WSAs, which is the highest number to date. Less than 50% of WSAs were able to submit water balance data in previous surveys. The confidence level of the data submitted varies between high (55%), medium (18%) and low (27%).
- **Category A** Metropolitan municipalities continue to report consistently and most can provide a water balance monthly. This is encouraging, considering that metropolitan municipalities represent 53.3% of the total water use and 47.3% of the population.
- **Categories B1 and B2** Most secondary city and large municipalities can provide a water balance regularly, although there is considerable room for improvement in some Provinces. The secondary city and large municipalities represent 21.4% of the total water use and 20.8% of the population. These municipalities are of economic significance and should have the necessary budgets and resources to implement WC/WDM.
- **Categories C2, B3 and B4 –** 53% of the small and rural municipalities can provide an accurate water balance regularly. Reasons for this include lack of budget, difficultly measuring the supply due to the large number of boreholes, and large indigent consumer bases. These municipalities represent approximately 25.3% of the total water use and 31.9% of the population.
- Water balance information is continuously updated and improved, which means that the data shown in this report differs from the data presented previous benchmarking studies.
- The current focus is to encourage the submission of the most basic water balance regularly, and not focussing on accuracy. Although the DWS highlights and fixes typical errors and anomalies, analysing, interpreting, and improving the water balance can become better over time as the DWS and WSA becomes more acquainted with the methodology and results. The results from this study should be seen as indicative of NRW and water losses in South Africa and improving the level of confidence will require significant time and resources.
- Water losses and NRW have increased in most municipalities since the onset of the Covid-19 pandemic in early 2020. The increase in NRW and water losses are attributed to reduced payment levels, increase supply to curb the spread of the virus, operations and maintenance budget cuts, and lack of capacity in municipalities to undertake repairs due to ill health and deaths.
- The 2022/23 national water balance indicates an SIV of 4 389.3 million m³/annum, NRW of 2 078.6 million m³/annum (47.4%) and water losses of 1 789.9 million m³/annum (40.8%). NRW and water losses have increased by a notable 5.8% and 4.3%, respectively, from 2016. However, the greatest increase was in the past three years and attributed to the COVID-19 pandemic. The fluctuation between 2016 and 2019 was generally less than 1%.
- There has been a noticeable increase in billed unmetered consumption because of incorporating FBW supply in the estimated water balances, especially for rural municipalities. Unbilled unmetered consumption remains lower than expected, considering the high number of unbilled properties in South Africa. Municipalities must correct their water balance calculations and show any water use after an accepted connection as authorised consumption and not as water loss.
- The national NRW and water loss trends show a steady increase in NRW over the past 10 years, and SIV projections with WC/WDM is gradually being exceeded. The figures are highly influenced by the Category A, B1 and B2 municipalities, some of whom have made significant strides in improving NRW management, reducing water losses, and managing the demand in line with reconciliation strategy targets.
- National trends suggest that the per capita consumption of 218 l/c/d has remained constant over the past 8 years, which is commendable. However, WC/WDM efforts must be elevated, considering the level of service and inefficiencies, and that South Africa is one of the 30 driest countries in the world. Nonetheless, the per capita consumption is significantly lower than the
previous national average of 237 l/c/d presented in June 2016 because of the prevailing droughts in parts of South Africa. The subsequent water restrictions and WC/WDM interventions had a significant impact on the SIV, especially in the Western Cape.

- The ILI of 7.0 deteriorated dramatically from 2016 to 2023, showing signs of improvement in 2017 and 2018. The COVID-19 pandemic has adversely affected municipal water losses, and this trend is expected to improve once municipalities have returned to normal, eliminated the leak repair back-logs, and improved revenue collection.
- The results indicate increased NRW, water losses and ILI, but a significant decrease in the national per capita consumption. Given the increases on three key NRW metrics, WC/WDM must be implemented as a matter of urgency in all Provinces, especially considering that several Provinces have NRW and water losses above 50%. There is significant scope for improvement in reporting levels, data accuracy, and reduction of SIV, NRW, water losses and improved efficiency across South Africa. Only continuous monitoring and analyses will provide a credible benchmark against which the progress made with the implementation of WC/WDM can be measured.
- All municipalities would benefit from targeted demand management programmes, including community education and awareness, leak repair, infrastructure refurbishment, pressure management, and installation of bulk meters, amongst other measures.
- Based on the functional expenditure and SIV of 127 WSAs, the average cost of supplying water is R 13.07/kl. This ranges from R 17.32/kl for metropolitan municipalities to R 12.06 for Category B3 municipalities. The cost of supplying rural municipalities (Categories B4 and C2) is the highest, ranging from R 14.26/kl to R 17.64/kl. This is a meaningful change from previous assessments that suggested that the cost of supplying water in rural schemes is less than in large municipalities. The higher cost is justified, considering that these schemes often consist of many small systems with boreholes, which are expensive to operate.
- Using the national average and category average tariffs, the estimated cost to supply water in South Africa is between R 60 and R 70 billion per annum and revenue of between R 42 and R 44 billion is generated from water sales. The value of NRW is between R 28 and R 33 billion at R 13.07/kl which is higher than previous estimates. The increase is due to above inflation water tariff increases from water boards, and the under estimation of water supply costs to rural municipalities.
- The results show that approximately R 1 billion per annum could be saved if the SIV is reduced by 2%, and municipalities would generate nearly R 1 billion per annum for every 2% increase in revenue. The nett benefit could be R 10 billion per annum if revenue is increased by 10% and the SIV is reduced by 10%. Reducing the SIV by 10% and increasing the revenue by 10% would reduce the national NRW figure to 35.7%, and the per capita consumption to 195 l/c/d.
- The estimated water balances increase the national percentage NRW by approximately 5.5% and reduces the I/c/d by approximately 23 I/c/d. The estimated water balances increases the national figures, and it is highly unlikely that the NRW in reporting municipalities would be lower than in nonreporting municipalities.

6 **RECOMMENDATIONS**

The following recommendations are made to build on the progress made with reporting and the implementation of WC/WDM in the municipal environment:

6.1 DEPARTMENT OF WATER AND SANITATION

- All Provincial Offices should establish reporting templates, schedule meetings with municipalities to confirm targets, analyse the water balance information, and provide feedback. The reporting structures in well performing Provinces are now well established and managed by the Provinces, and most municipalities are reporting quarterly. The initiative was supported by Regulations and sending directives to municipalities who did not respond. A similar approach could be followed for all Provinces to improve communications and water balance reporting.
- The national NRW assessment suggests that 40% of municipalities cannot provide basic information such as monthly consumption figures and only 44% can provide information with a medium to high confidence level. One of the key challenges with gathering the information is the poor communication channels with municipalities, which include resigned staff and a considerable number of private e-mails. Discussions also indicate that in some cases municipalities are unwilling to provide the information as it reflects badly on them, or they feel that the information has already been submitted through the WSDP and various questionnaires. Government should reconsider communication channels with municipalities. Communication should be more formal, avoid duplication, and target senior management in the organisation. In this regard, the circulars from National Treasury provide clear guidelines to municipalities and communications are only with the mayor, municipal manager, and CFO.
- Maintenance of the reconciliation strategies must continue and should be used to monitor the progress made with the implementation of WC/WDM.
- Ongoing monitoring and reporting of municipal NRW and water loss performance by DWS against determined targets and baselines are critical.
- DWS Provincial Offices / CMAs / Water Boards must increase their skills and capacity to provide WC/WDM support to municipalities, for monitoring and reporting.
- Budgets are allocated towards new infrastructure projects through WSIG, RBIG, MIG, and other funding programmes, but the management of these funds is fragmented, with emphasis on new infrastructure and insufficient focus on WC/WDM.
- The No Drop incentive-based regulation programme should be rolled-out as planned, alongside the other Drop programmes, to elevate WC/WDM regulation in the municipal environment. DWS should also strengthen and enforce its regulatory mandate to penalise municipalities that do not comply.
- The recommendations of South Africa's National Development Plan (Vision for 2030) (National Planning Commission, 2013) must be implemented.
- The Regulations Relating to Compulsory National Standards and Measures to Conserve Water (GNR.509 of 8 June 2001) states that a water services institution must fit a suitable water volume measuring device or volume controlling device to every user connection to control demand. Many municipalities do not comply with this regulation, which results in excessive leakages on private properties through leaking taps and toilets as there is no incentive for consumers to fix the leaks. DWS should consider a policy whereby water services institutions are compelled to either measure and control or fix leaks on private properties, as government cannot continue to fund new infrastructure projects to supplement leakage. DWS is already encouraging the fixing of leaks through various programmes.
- The National Water and Sanitation Master Plan (DWS, 2018) states that South Africa is facing a water crisis caused by insufficient water infrastructure maintenance and investment, recurrent

droughts driven by climatic variation, inequities in access to water and sanitation, environmental degradation and resource pollution, and a lack of skilled water engineers. This crisis is already having significant impacts on economic growth and on the well-being of everyone in South Africa. The recommendations of the National Water and Sanitation Master Plan should be implemented as a matter of urgency.

6.2 MUNICIPALITIES

- Too many local municipalities are not aware of the reconciliation strategies or expect DWS to
 provide the necessary funding to implement these strategies. Municipalities must be reminded of
 their responsibilities in terms of the Water Services Act (No. 108 of 1997) and actively participate,
 budget through the Integrated Development Planning process, and implement the results from the
 reconciliation strategies.
- Municipalities should encourage consumers to appreciate the value of water and enforce the user pays principal, through on-going awareness programmes.
- Municipalities should continue their effort to capitalise on the awareness created and sustain the savings achieved during the drought.
- Municipalities should resolve intermittent supply as it is a prerequisite for an effective WC/WDM programme. Intermittent supply is ineffective (consumers adapt), corrupts meter readings and billing data, expensive to operate, damage pipe seals with subsequent increased leakage and is disruptive.
- Municipalities must actively participate and report at the reconciliation strategies meetings and use the outcomes to prioritise resources and budgets.
- Monitoring and reporting on water balances by municipalities could become more self-regulatory if
 a policy is implemented that no new infrastructure projects will be funded unless the municipality
 can provide actual consumption figures and proof that their water losses are under control. The
 IWA water balance should become the backbone of all water related management and decision
 support systems, especially grant application and awarding processes.
- Municipalities should increase their efforts to achieve the targets set under the reconciliation strategies to ensure water security, and targets must be reviewed regularly.
- Municipalities should increase their efforts to reduce NRW and the negative impact it has on their ability to generate income and operate a viable water service.
- Municipalities should resolve metering and billing issues to increase payment levels, encourage consumer fixing of leaks, prosecute illegal water connections, and reduce theft of water.
- The recommendations of the Third Edition of the National Water Resource Strategy (DWA, June 2021) must be implemented, including the call for greater emphasis on meeting specific targets to reduce water loss. WC/WDM measures will have multiple benefits in terms of the postponement of infrastructure augmentation, mitigation against climate change, support for economic growth, and ensuring that adequate water is available for equitable allocation.
- Municipal asset management needs to be improved to ensure greater sustainability of water supply services.
- There is close correlation between operations, maintenance, low water losses and NRW. Municipalities should implement proactive operations and maintenance programmes to coincide with WC/WDM programmes.
- Closer involvement and collaboration with National Treasury are critical to ensure issues related to funding of WC/WDM programmes, and metering and billing issues are resolved with municipal finance departments.

6.3 STAKEHOLDERS

- Greater involvement of the private sector through public-private partnership, stewardship, and performance-based contracts should be encouraged to improve service delivery and expedite the implementation of WC/WDM interventions. National Treasury should review the procurement of these contracts to eliminate bottlenecks and attract private investment.
- On-going provision of mentorship to municipalities through the DWS Provincial Offices, Department of Cooperative Governance and Traditional Affairs (CoGTA), the South African Local Government Association (SALGA) and other institutions is critical.
- Closer involvement and collaboration with CoGTA and SALGA are critical to ensure issues related to human resources skills and capacity in municipalities, payment for services, and unauthorised water use are resolved.
- Closer collaboration is required with other national, provincial, and local government departments that are big water users. These include Departments of Education, Correctional Services, Health, Public Works, and Housing, to ensure leakages and wastage are brought under control.
- Every citizen has a right to, amongst other things, sufficient food, and water, placing water at the forefront of human development and therefore emphasizing the importance of its management and beneficial use. This human right comes with a responsibility and every citizen must use water sparingly, pay for water services, fix household leaks, report municipal leaks, and promote water use efficiency at home, work, and public facilities.

APPENDIX A: MUNICIPAL WATER BALANCE SCORECARDS

National and Provincial

54 331 818

17 097 678

10 680 482

8 624 517

8 443 043

181 475

2 237 439

230 049

16

46

46

95%

21%

7%

7%

7%

4 389 308 559

1 970 273 563

2 419 034 996

2 599 360 426

2 310 755 600

1 926 567 80

1 477 981 595

373 271 555

75 314 658

384 187 799

288 604 819

70 115 107

218 489 713

1 789 948 133 375 660 852

1 414 287 28[.]

203 210 832

1 211 076 450

2 310 755 600

2 078 552 953

4 721 340 439

4 216 963 316

IWA Water Balance Diagram (million m³/annum) for Jun-23 (select year)

Comments

Province National

				52.6%
	Authorised consumption = 2599.360	Billed authorised = 2310.756	Billed metered = 1926.568	Revenue water = 2310.756
System Input Volume = 4389.309			Billed unmetered = 384.188	
		Unbilled authorised = 288.605	Unbilled unmetered = 218.490	
		Apparent losses = 375.661	Apparent losses = 375.661	
218 Void	Water losses = 1789.948	Real Losses = 1414.287	Real Losses = 1414.287	Non-revenue water = 2078.553
	40.8%	ILI = 7.0	16.8 m3/km/day	47.4%

	Year ending	Jun-13	Jun-14	Jun-15	Jun-16	Jun-17	Jun-18	Jun-19	Jun-20	Jun-21	Jun-22	Jun-23
	Indicator as % of system input volume											
	% Revenue water	63.5%	63.3%	62.2%	58.5%	59.4%	58.9%	57.0%	55.7%	54.6%	53.2%	52.6%
	% Non-revenue water	36.5%	36.7%	37.8%	41.5%	40.6%	41.1%	43.0%	44.3%	45.4%	46.8%	47.4%
	% Water Losses	29.3%	31.2%	32.3%	36.4%	35.1%	34.9%	37.5%	38.8%	40.1%	40.7%	40.8%
	System input volume unit consumption											
	Litres / capita / day	191	185	201	237	220	213	213	216	218	219	218
	m ³ / household / month	19	19	20	23	21	20	20	20	21	21	21
	m ³ / connection / month	26	25	27	32	30	30	30	31	31	33	34
	Authorised Unit Consumption											
	Litres / capita / day	134	126	135	149	142	137	132	131	129	129	127
	m ³ / household / month	14	13	13	14	14	13	13	12	12	13	12
itors	m ³ / connection / month	19	17	18	20	19	19	19	19	19	19	20
ndica	Domestic (& ND) m ³ / connection / month	16	15	16	18	18	17	17	17	16	16	17
nce i	Non-domestic m ³ / connection / month	201	140	197	174	123	147	143	171	163	160	171
rmar	Water loss indicators											
perfo	Litres / capita / day	57	59	66	88	79	75	81	85	89	91	90
Key	m ³ / household / month	6	6	7	9	8	7	8	8	8	9	9
	m ³ / connection / month	8	8	9	12	11	11	11	12	13	14	14
	UARL : Losses (litres / connection / day)	52	52	52	53	53	54	54	54	54	52	52
	CARL : Losses (litres / connection / day)	208	207	236	309	280	278	297	320	335	358	363
	Infrastructure Leakage Index (ILI)	4.0	3.9	4.6	5.8	5.3	5.1	5.5	5.9	6.2	6.9	7.0
	CARL : Losses (m ³ / km mains / day)	10	11	12	16	14	13	14	15	16	17	17
	% Population growth	1.81%	1.85%	1.64%	1.81%	2.09%	2.63%	2.94%	2.30%	1.54%	1.13%	1.68%
	% Water demand growth	-1.22%	-1.43%	10.46%	31.63%	-2.41%	-2.94%	0.94%	3.08%	2.91%	2.11%	1.73%
	% Water demand growth without WDM	2.85%	32.63%	17.66%	1.45%	2.41%	2.49%	2.58%	2.55%	2.41%	2.27%	2.19%
	% Water demand growth with WDM	0.17%	31.19%	16.36%	5.72%	0.88%	1.59%	2.25%	2.37%	2.46%	2.36%	2.13%
	5 Year Annualised Population Growth	2.75%	2.63%	2.14%	1.66%	1.90%	2.10%	2.34%	2.32%	2.27%	1.11%	1.15%
	5 Year Annualised Water Growth	4.11%	3.77%	3.64%	3.58%	3.57%	3.25%	3.42%	3.15%	2.77%	8.21%	4.18%

Non-revenue water trend

	Province	Eastern Cap	e										
	Municipal Code												
	District Municipality	Cacadu, Ama	athole, Chris F	lani, Joe Gqab	i, OR Thambo)							
	Municipality												
	Settlements												
		Year ending	Jun-13	Jun-14	Jun-15	Jun-16	Jun-17	Jun-18	Jun-19	Jun-20	Jun-21	Jun-22	Jun-23
_	Population served	No	4 258 296	4 269 938	4 294 770	4 477 918	4 697 378	4 443 888	4 472 177	4 491 422	4 500 104	4 742 235	4 773 325
	Households served	No	1 171 071	1 183 477	1 195 885	1 208 325	1 275 960	1 198 390	1 206 299	1 211 946	1 214 430	1 252 386	1 262 172
	Connections - total	No	1 062 441	1 076 636	1 082 167	1 086 215	1 138 664	1 094 483	1 029 952	1 034 813	1 029 749	1 032 402	1 010 755
	Connections - metered	No	711 838	715 992	719 873	724 758	716 098	707 244	729 551	732 267	731 746	735 154	683 098
	Domestic (and non-domestic)	No	695 797	699 119	702 902	707 555	698 529	689 638	712 550	715 858	712 447	715 963	664 129
	Non-domestic	No	16 041	16 873	16 972	17 203	17 569	17 606	17 002	16 410	19 299	19 191	18 969
	Connections - unmetered	No	350 603	360 644	362 293	361 457	422 566	387 239	300 400	302 546	298 003	297 248	327 657
Data	Households / connection	No	1.1	1.1	1.1	1.1	1.1	1.1	1.2	1.2	1.2	1.2	1.2
put	Length of mains	km	19 958	19 889	20 069	20 226	21 186	20 853	21 192	22 608	22 743	23 029	23 090
-	Connections / km	No / km	53	54	54	54	54	52	49	46	45	45	44
	Average system pressure	m	51	52	48	49	49	49	49	46	46	46	46
	Time system pressurised	%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
	Apparent losses	%	21%	20%	18%	19%	20%	20%	21%	21%	22%	22%	22%
	Consumer meter age	%	6%	6%	6%	6%	6%	6%	7%	7%	7%	7%	7%
	Illegal connections	%	6%	6%	5%	5%	6%	6%	6%	7%	7%	7%	7%
	Data transfer	%	8%	8%	7%	7%	8%	8%	8%	8%	8%	8%	8%
	System input volume	kl/annum	197 544 976	202 304 984	205 196 065	350 617 773	349 628 741	335 357 994	339 579 811	333 625 862	332 784 991	313 262 793	322 340 566
	Own sources	kl/annum	169 707 363	173 610 253	175 950 449	325 857 436	320 115 946	305 845 200	311 155 805	305 201 856	300 413 306	280 835 045	289 302 168
	Other sources	kl/annum	27 837 613	28 694 731	29 245 617	24 760 337	29 512 795	29 512 795	28 424 006	28 424 006	32 371 686	32 427 749	33 038 399
	Authorised Consumption	kl/annum	117 868 585	121 649 841	124 491 044	191 258 526	201 466 635	194 902 885	192 783 884	182 531 441	184 306 286	187 771 224	189 304 930
	Billed authorised	kl/annum	108 743 588	118 077 811	120 631 463	182 003 794	190 744 453	183 645 754	183 345 532	172 150 461	171 952 257	164 489 616	160 335 729
	Billed metered	kl/annum	100 674 548	105 596 589	113 561 731	107 935 122	118 172 317	110 742 591	111 437 769	116 879 034	119 866 668	120 711 310	119 323 695
	Domestic (and non-domestic)	kl/annum	67 859 923	71 369 536	89 203 311	75 683 679	79 306 646	77 371 379	80 604 844	85 788 542	87 449 173	89 925 418	89 181 319
	Non-domestic	kl/annum	30 259 759	30 675 082	20 767 671	26 650 274	33 127 783	27 700 607	26 106 888	26 999 955	27 628 373	26 822 388	26 309 265
tions	Export volume	kl/annum	2 554 866	3 551 971	3 590 749	5 601 169	5 737 888	5 670 606	4 726 037	4 090 537	4 789 123	3 963 504	3 833 111
lcula	Billed unmetered	kl/annum	8 069 040	12 481 222	7 069 732	74 068 672	72 572 136	72 903 163	71 907 763	55 271 427	52 085 589	43 778 306	41 012 034
ie Ca	Unbilled authorised	kl/annum	9 124 997	3 572 031	3 859 582	9 254 732	10 722 182	11 257 132	9 438 352	10 380 980	12 354 029	23 281 609	28 969 201
alanc	Unbilled metered	kl/annum	6 981 212	1 256 801	1 510 869	517 897	8 325 777	8 866 379	1 251 497	1 058 497	1 333 734	11 749 828	14 565 093
er B	Unbilled unmetered	kl/annum	2 143 785	2 315 230	2 348 713	8 736 835	2 396 405	2 390 753	8 186 855	9 322 483	11 020 295	11 531 781	14 404 108
Wat	Water Losses	kl/annum	79 676 391	80 655 143	80 705 021	159 359 247	148 162 106	140 455 109	146 795 927	151 094 421	148 478 705	125 491 569	133 035 636
	Commercial / Apparent losses	kl/annum	16 479 734	16 131 029	14 795 921	29 841 916	29 782 347	28 233 149	31 342 678	32 449 326	33 003 369	27 899 465	29 244 084
	Physical / Real losses	kl/annum	63 196 657	64 524 114	65 909 100	129 517 331	118 379 759	112 221 960	115 453 249	118 645 095	115 475 336	97 592 104	103 791 553
	UARL	kl/annum	22 722 433	23 290 910	21 571 334	21 913 590	22 966 314	22 231 707	21 422 864	20 818 177	20 624 657	20 746 155	20 475 003
	Potential real loss saving	kl/annum	40 474 224	41 233 205	44 337 767	107 603 741	95 413 445	89 990 252	94 030 385	97 826 918	94 850 679	76 845 949	83 316 549
	Revenue water	kl/annum	108 743 588	118 077 811	120 631 463	182 003 794	190 744 453	183 645 754	183 345 532	172 150 461	171 952 257	164 489 616	160 335 729
	Non-Revenue water kl/annum		88 801 388	84 227 174	84 564 602	168 613 979	158 884 288	151 712 240	156 234 278	161 475 400	160 832 734	148 773 178	162 004 837
	Projected SIV without WDM	kl/annum		395 635 843	405 444 632	414 316 466	423 205 158	432 427 304	441 666 849	451 262 928	460 135 098	469 308 799	478 482 500
	Projected SIV with WDM		360 497 817	365 836 425	370 110 338	374 334 223	378 738 727	383 093 736	389 937 880	398 810 050	407 983 751	417 157 452	
Source	e of information												
_													
Comm	ents												

IWA Water Balance Diagram (million m³/annum) for Jun-23 (select year)

49.7% Billed metered = 119.324 Billed authorised = 160.336 Revenue water = 160.336 Authorised consumption = 189.305 106 l/c/d Billed unmetered = 41.012 System Input Volume = 322.341 Unbilled metered = 14.565 Unbilled authorised = 28.969 Unbilled unmetered = 14.404 Apparent losses = 29.244 Apparent losses = 29.244 Non-revenue water = 162.005 183 l/c/d Water losses = 133.036 Real Losses = 103.792 Real Losses = 103.792 41.3% ILI = 5.1 12.3 m3/km/day 50.3%

	Year ending	Jun-13	Jun-14	Jun-15	Jun-16	Jun-17	Jun-18	Jun-19	Jun-20	Jun-21	Jun-22	Jun-23
	Indicator as % of system input volume											
	% Revenue water	55.0%	58.4%	58.8%	51.9%	54.6%	54.8%	54.0%	51.6%	51.7%	52.5%	49.7%
	% Non-revenue water	45.0%	41.6%	41.2%	48.1%	45.4%	45.2%	46.0%	48.4%	48.3%	47.5%	50.3%
	% Water Losses	40.3%	39.9%	39.3%	45.5%	42.4%	41.9%	43.2%	45.3%	44.6%	40.1%	41.3%
	System input volume unit consumption											
	Litres / capita / day	125	128	129	211	201	203	205	201	200	179	183
	m ³ / household / month	14	14	14	24	22	23	23	23	23	21	21
	m ³ / connection / month	15	15	16	26	25	25	27	27	27	25	26
	Authorised Unit Consumption											
	Litres / capita / day	74	76	77	114	114	117	115	109	109	106	106
	m ³ / household / month	8	8	8	13	13	13	13	12	12	12	12
itors	m ³ / connection / month	9	9	9	14	14	14	15	14	15	15	15
ndica	Domestic (& ND) m ³ / connection / month	7	7	8	12	12	13	13	12	13	13	13
nce i	Non-domestic m ³ / connection / month	157	151	102	129	157	131	128	137	119	116	116
rmai	Water loss indicators											
perfo	Litres / capita / day	51	52	51	98	86	87	90	92	90	73	76
Key	m ³ / household / month	6	6	6	11	10	10	10	10	10	8	9
	m ³ / connection / month	6	6	6	12	11	11	12	12	12	10	11
	UARL : Losses (litres / connection / day)	59	59	55	55	55	56	57	55	55	55	55
	CARL : Losses (litres / connection / day)	163	164	167	327	285	281	307	314	307	259	281
	Infrastructure Leakage Index (ILI)	2.8	2.8	3.1	5.9	5.2	5.0	5.4	5.7	5.6	4.7	5.1
	CARL : Losses (m ³ / km mains / day)	9	9	9	18	15	15	15	14	14	12	12
	% Population growth	0.28%	0.27%	0.58%	3.02%	4.58%	-0.82%	0.11%	0.07%	0.03%	1.00%	1.58%
	% Water demand growth	-9.96%	2.41%	1.43%	96.68%	30.53%	13.45%	26.05%	13.44%	22.24%	9.97%	72.89%
	% Water demand growth without WDM			2.48%	1.08%	2.17%	0.21%	0.21%	0.21%	0.17%	0.20%	0.19%
	% Water demand growth with WDM			1.48%	90.90%	1.15%	14.46%	13.36%	13.27%	0.23%	0.23%	0.22%
	5 Year Annualised Population Growth	2.00%	1.46%	1.06%	1.07%	2.04%	-0.82%	0.11%	0.07%	0.03%	1.00%	1.58%
	5 Year Annualised Water Growth	-6.28%	-7.10%	-6.71%	9.83%	9.77%	13.45%	26.05%	13.44%	22.24%	9.97%	72.89%

Population versus System Input Volume trend (litres / capita /day)

	Province	Free State											
	Municipal Code	FS196											
	District Municipality	Dr Ruth Seg	omotsi Mompa	iti, Lejweleput	swa, Thabo M	ofutsanyana, F	ezile Dabi						
	Municipality												
	Settlements												
		Vear ending	lun-12	lun-14	lup-15	lun-16	lun-17	Jun-18	lun-10	lun-20	lun-21	lun-22	lun-22
đ	Population convod	No.	Juli-15 2 632 800	2 6/1 201	2 652 166	2 723 028	2 768 365	2 881 990	2 977 420	2 968 504	2 085 340	3 000 518	3 145 674
-	Households sorved	No	834 565	850 760	2 032 100	2 723 020 010 172	2 700 303	2 001 330	1 025 562	1 022 515	1 028 244	1 032 762	1 030 863
	Connections - total	No	772 429	802 022	004 350	947 012	960 274	021 515	049 209	044 696	040 569	042 002	040 902
		No	697 609	714 270	727 294	754 945	760 642	921 313	540 250 706 467	702 690	545 J00 707 294	542 503 701 516	545 002 709 042
	Domestic (and non-domestic)	No	687 608	714 370	727 384	754 845	769 643	816 878	702 701	788 023	703 518	786 507	703 136
	Non domostic	No	007 000	114 370	121 304	104040	/03/043	010 070	3 766	3 766	3 766	100 331	1 007
		No	84 830	89 552	80 474	02 168	99.631	104 637	151 831	151 007	152 285	151 387	151 750
	Households / connection	No	04 000	1 1	11	32 100	1 1	11	101 001	11	132 203	101 307	101700
	Length of mains	km	15 709	16 099	16 489	16 907	17 552	18 392	19 067	18 933	19 105	18 871	18 967
	Connections / km	No/km	49	50	50	50	50	50	50	50	50	50	50
	Average system pressure	m	44	48	47	44	44	44	44	44	44	47	47
	Time system pressurised	%	100%	100%	100%	100%	100%	100%	100%	100%	100%	94%	94%
	Apparent losses	%	20%	20%	21%	21%	20%	20%	20%	20%	20%	19%	21%
	Consumer meter age	%	6%	6%	8%	7%	6%	6%	6%	6%	6%	6%	7%
	Illegal connections	%	6%	6%	7%	7%	6%	6%	6%	6%	6%	6%	6%
	Data transfer	%	8%	8%	5%	7%	8%	8%	8%	8%	8%	8%	8%
	System input volume	kl/annum	188 395 654	132 417 094	121 219 008	233 020 335	230 378 911	234 199 766	241 103 855	240 913 681	244 232 783	247 056 885	247 977 565
	Own sources	kl/annum	105 141 630	44 702 328	33 620 940	148 568 720	150 205 846	152 000 269	154 780 611	154 691 081	157 799 998	159 219 771	160 165 059
	Other sources	kl/annum	83 254 024	87 714 766	87 598 068	84 451 615	80 173 065	82 199 498	86 323 244	86 222 601	86 432 785	87 837 114	87 812 506
	Authorised Consumption		133 820 096	86 311 306	87 714 221	127 819 995	126 565 870	122 468 055	123 923 799	121 362 087	120 301 057	119 985 966	127 113 035
	Billed authorised	kl/annum	95 192 468	68 656 961	70 622 588	113 091 619	115 648 989	116 642 149	118 217 877	113 448 524	114 620 933	114 281 016	117 228 256
	Billed metered	kl/annum	95 084 468	68 656 961	66 837 908	89 529 051	91 829 161	93 438 223	94 225 429	91 717 162	93 288 739	93 946 878	102 385 811
	Domestic (and non-domestic)	kl/annum	95 084 468	68 656 961	66 837 908	89 529 051	91 829 161	93 438 223	94 225 429	91 717 162	93 288 739	93 802 164	96 073 062
	Non-domestic	kl/annum	0	0	0	0	0	0	0	0	0	144 714	6 312 683
ions	Export volume	kl/annum	0	0	0	0	0	0	0	0	0	0	66
culat	Billed unmetered	kl/annum	108 000	0	3 784 680	23 562 568	23 819 828	23 203 926	23 992 448	21 731 362	21 332 194	20 334 138	14 842 445
e Calc	Unbilled authorised	kl/annum	38 627 628	17 654 345	17 091 633	14 728 376	10 916 882	5 825 907	5 705 922	7 913 562	5 680 124	5 704 950	9 884 780
lance	Unbilled metered	kl/annum	33 954 652	12 871 191	12 301 877	8 819 068	686 683	850 536	797 469	2 976 071	733 817	754 007	2 801 828
er Ba	Unbilled unmetered	kl/annum	4 672 976	4 783 154	4 789 757	5 909 308	10 230 198	4 975 371	4 908 453	4 937 491	4 946 307	4 950 943	7 082 951
Wate	Water Losses	kl/annum	54 575 558	46 105 789	33 504 787	105 200 340	103 813 041	111 731 711	117 180 056	119 551 595	123 931 726	127 070 919	120 864 530
	Commercial / Apparent losses	kl/annum	10 915 112	9 221 158	6 967 844	21 704 809	20 762 608	22 122 879	23 201 651	23 591 515	24 455 861	24 499 273	25 006 871
	Physical / Real losses	kl/annum	43 660 446	36 884 631	26 536 943	83 495 530	83 050 433	89 608 832	93 978 405	95 960 080	99 475 866	102 571 646	95 857 659
	UARL	kl/annum	14 465 340	16 344 693	16 417 822	15 590 564	16 242 461	17 156 456	17 695 749	17 610 536	17 723 036	17 585 114	17 688 655
	Potential real loss saving	kl/annum	29 195 107	20 539 938	10 119 121	67 904 967	66 807 972	72 452 376	76 282 656	78 349 544	81 752 830	84 986 532	78 169 004
	Revenue water	kl/annum	95 192 468	68 656 961	70 622 588	113 091 619	115 648 989	116 642 149	118 217 877	113 448 524	114 620 933	114 281 016	117 228 256
	Non-Revenue water	kl/annum	93 203 186	63 760 133	50 596 420	119 928 716	114 729 923	117 557 618	122 885 978	127 465 157	129 611 850	132 775 869	130 749 310
	Projected SIV without WDM	kl/annum	257 740 318	264 718 701	271 962 658	277 720 537	283 644 188	289 736 573	296 000 851	302 440 381	308 914 157	315 567 973	322 169 723
	Projected SIV with WDM	kl/annum	244 320 880	248 575 952	253 199 870	255 063 460	258 090 125	263 171 284	268 452 953	274 203 686	280 282 159	284 228 177	289 611 079
Sourc	e of information												
ommei	nts			1		1	1	I	1	1	1		

IWA Water Balance Diagram (million m³/annum) for Jun-23 (select year)

47.3% Billed metered = 102.386 Billed authorised = 117.228 Revenue water = 117.228 Authorised consumption = 127.113 111 l/c/d Billed unmetered = 14.842 Unbilled authorised = 9.885 System Input Volume = 247.978 nhilled unmetered = 7.083 Apparent losses = 25.007 Apparent losses = 25.007 Non-revenue water = 130.749 Water losses = 120.865 216 l/c/d Real Losses = 95.858 Real Losses = 95.858 48.7% ILI = 5.4 13.8 m3/km/day 52.7%

		Year ending	Jun-13	Jun-14	Jun-15	Jun-16	Jun-17	Jun-18	Jun-19	Jun-20	Jun-21	Jun-22	Jun-23
Key	Indicator as % of system input volu	me											
	% Revenue water		50.5%	51.8%	58.3%	48.5%	50.2%	49.8%	49.0%	47.1%	46.9%	46.3%	47.3%
	% Non-revenue water		49.5%	48.2%	41.7%	51.5%	49.8%	50.2%	51.0%	52.9%	53.1%	53.7%	52.7%
	% Water Losses		29.0%	34.8%	27.6%	45.1%	45.1%	47.7%	48.6%	49.6%	50.7%	51.4%	48.7%
	System input volume unit consump	tion											
	Litres / capita / day		196	137	125	234	228	223	222	222	224	226	216
	m ³ / household / month		19	13	11	21	20	20	20	20	20	20	20
	m ³ / connection / month		20	14	12	23	22	21	21	21	21	22	22
	Authorised Unit Consumption												
	Litres / capita / day		139	90	91	129	125	116	114	112	110	110	111
	m ³ / household / month		13	8	8	12	11	10	10	10	10	10	10
	m ³ / connection / month		14	9	9	13	12	11	11	11	11	11	11
	Domestic (& ND) m ³ / connection / n	nonth	14	9	9	13	12	11	11	11	11	11	11
	Non-domestic m ³ / connection / mor	nth							0	0	0	2	107
	Water loss indicators												
	Litres / capita / day		57	48	35	106	103	106	108	110	114	116	105
	m ³ / household / month		5	4	3	10	9	9	10	10	10	10	10
	m ³ / connection / month		6	5	3	10	10	10	10	11	11	11	11
	UARL : Losses (litres / connection /	day)	51	56	55	50	51	51	51	51	51	51	51
	CARL : Losses (litres / connection /	day)	155	126	89	270	262	266	272	278	287	298	277
	Infrastructure Leakage Index (ILI)		3.0	2.3	1.6	5.4	5.1	5.2	5.3	5.4	5.6	5.8	5.4
	CARL : Losses (m ³ / km mains / day)	7.6	6.3	4.4	13.5	13.0	13.3	13.5	13.9	14.3	14.9	13.8
	% Population growth		0.34%	0.32%	0.41%	1.32%	2.17%	2.88%	3.71%	1.49%	0.13%	0.54%	2.65%
	% Water demand growth		11.21%	-29.71%	-8.46%	174.38%	37.86%	0.25%	2.30%	1.42%	0.65%	1.27%	0.76%
	% Water demand growth without WI	DM	2.71%	2.71%	2.74%	1.05%	2.13%	2.14%	2.15%	2.17%	2.16%	2.15%	2.12%
	% Water demand growth with WDM		1.30%	1.74%	1.86%	0.37%	0.96%	1.58%	1.99%	2.07%	2.18%	1.81%	1.65%
	5 Year Annualised Population Grow	rth	0.73%	0.34%	0.93%	0.74%	1.08%	1.76%	2.07%	1.57%	1.11%	0.48%	1.06%
	5 Year Annualised Water Growth		1.65%	-8.46%	-11.31%	6.58%	6.34%	12.08%	23.21%	4.19%	4.09%	18.96%	0.54%

Non-revenue water trend

Population versus System Input Volume trend (litres / capita /day)

	Province	Gauteng											
	Municipal Code												
	District Municipality	City of Joha	nnesburg, City	of Tshwane,	Ekurhuleni, Se	edibeng, West	Rand						
	Municipality												
	Settlements												
_		Year ending	Jun-13	Jun-14	Jun-15	.lun-16	.lun-17	Jun-18	.lun-19	.lun-20	.lun-21	Jun-22	Jun-23
_	Population served	No	12 224 995	12 521 317	12 839 931	12 978 281	13 428 134	14 404 910	15 094 546	15 467 592	15 816 699	15 032 564	15 906 536
	Households served	No	4 155 668	4 369 184	4 582 703	4 796 234	5 030 659	5 391 485	5 649 500	5 789 004	5 919 358	5 153 217	5 660 258
	Connections - total	No	2 198 503	2 291 376	2 155 300	2 218 891	2 269 982	2 308 073	2 430 501	2 215 367	2 299 250	2 258 862	2 292 566
	Connections - metered	No	1 900 053	2 002 976	1 578 805	1 611 267	1 668 208	1 773 070	1 834 407	1 713 340	1 734 914	2 027 121	2 061 420
	Domestic (and non-domestic)	No	1 854 949	1 930 548	1 495 506	1 520 984	1 575 994	1 675 862	1 738 992	1 635 330	1 649 845	1 967 738	2 009 126
	Non-domestic	No	45 105	72 428	83 299	90 284	92 214	97 207	95 414	78 010	85 069	59 383	52 294
	Connections - unmetered	No	298 450	288 399	576 495	607 624	601 774	535 003	596 095	502 028	564 336	231 741	231 146
Data	Households / connection	No	1.9	1.9	2.1	2.2	2.2	2.3	2.3	2.6	2.6	2.3	2.5
1 put l	Length of mains	km	45 622	41 985	39 322	42 028	42 122	42 920	43 675	40 700	40 780	44 154	45 628
	Connections / km	No/km	48	55	55	53	54	54	56	54	56	51	50
	Average system pressure	m	53	53	54	53	50	53	53	53	53	53	53
	Time system pressurised	%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
	Apparent losses	%	0	0	0	0	0	0	0	0	0	0	0
	Consumer meter age	%	10%	10%	10%	9%	9%	10%	11%	7%	7%	7%	10%
	Illegal connections	%	6%	8%	8%	8%	8%	8%	7%	7%	6%	6%	10%
	Data transfer	%	10%	10%	10%	10%	10%	10%	9%	8%	7%	7%	8%
	System input volume	kl/annum	1 393 851 728	1 423 863 630	1 462 868 565	1 474 082 056	1 393 721 925	1 413 889 515	1 488 931 412	1 493 422 521	1 525 333 405	1 536 435 972	1 569 696 786
	Own sources	kl/annum	96 450 328	81 535 287	87 189 781	75 229 015	69 556 288	53 997 409	70 421 775	67 061 039	62 558 426	66 337 603	66 287 218
	Other sources	kl/annum	1 297 401 400	1 342 328 343	1 375 678 784	1 398 853 041	1 324 165 637	1 359 892 106	1 418 509 637	1 426 361 482	1 462 774 979	1 470 098 369	1 503 409 568
	Authorised Consumption	kl/annum	1 030 390 954	1 008 457 032	1 044 884 360	1 069 034 271	998 897 284	1 020 321 910	1 003 737 357	1 024 933 756	998 837 314	1 012 016 781	1 024 375 221
	Billed authorised	kl/annum	915 036 358	904 731 503	931 737 473	944 261 160	883 911 256	905 968 137	897 772 260	915 653 704	884 539 985	887 774 438	902 178 874
	Billed metered	kl/annum	865 981 562	852 648 284	823 308 870	824 797 220	763 238 671	778 719 656	770 626 853	770 682 302	745 695 803	746 639 590	760 715 016
	Domestic (and non-domestic)	kl/annum	707 742 600	650 003 602	574 247 145	584 952 964	612 247 055	628 088 517	626 700 750	612 388 931	596 850 052	586 308 442	593 227 379
	Non-domestic	kl/annum	136 032 174	180 132 012	226 737 102	212 324 885	125 656 991	128 188 026	122 043 097	132 715 898	126 115 453	136 295 323	143 112 251
suo	Export volume	kl/annum	22 206 787	22 512 670	22 324 624	27 519 371	25 334 626	22 443 114	21 883 006	25 577 473	22 730 298	24 035 825	24 375 386
culati	Billed unmetered	kl/annum	49 054 796	52 083 219	108 428 603	119 463 940	120 672 585	127 248 481	127 145 407	144 971 402	138 844 182	141 134 848	141 463 858
e Calc	Unbilled authorised	kl/annum	115 354 597	103 725 529	113 146 887	124 773 111	114 986 028	114 353 773	105 965 097	109 280 052	114 297 329	124 242 343	122 196 347
alanc	Unbilled metered	kl/annum	16 216 652	637 738	2 466 277	11 375 535	3 294 966	3 349 375	3 409 962	2 167 277	2 176 295	3 033 006	3 911 625
tter Bi	Unbilled unmetered	kl/annum	99 137 945	103 087 791	110 680 610	113 397 576	111 691 062	111 004 398	102 555 135	107 112 775	112 121 034	121 209 337	118 284 723
Wa	Water Losses	kl/annum	363 460 774	415 406 597	417 984 205	405 047 785	394 824 641	393 567 606	485 194 055	468 488 765	526 496 091	524 419 191	545 321 564
	Commercial / Apparent losses	kl/annum	93 772 880	112 990 594	113 691 704	109 144 176	106 389 448	108 624 659	128 884 423	103 067 528	108 458 195	108 030 353	152 690 038
	Physical / Real losses	kl/annum	269 687 894	302 416 003	304 292 501	295 903 609	288 435 193	284 942 947	356 309 632	365 421 236	418 037 896	416 388 837	392 631 526
	UARL	kl/annum	49 831 752	49 765 815	48 157 415	48 973 980	46 978 709	50 664 794	52 822 587	48 076 048	49 391 666	49 937 370	50 921 681
	Potential real loss saving	kl/annum	219 856 142	252 650 188	256 135 086	246 929 628	241 456 484	234 278 152	303 487 045	317 345 189	368 646 230	366 451 467	341 709 845
	Revenue water	kl/annum	915 036 358	904 731 503	931 737 473	944 261 160	883 911 256	905 968 137	897 772 260	915 653 704	884 539 985	887 774 438	902 178 874
	Non-Revenue water	kl/annum	478 815 371	519 132 126	531 131 091	529 820 896	509 810 669	507 921 378	591 159 152	577 768 817	640 793 420	648 661 534	667 517 912
	Projected SIV without WDM	kl/annum	1 381 188 945	1 407 385 317	1 434 071 521	1 461 309 400	1 488 547 279	1 526 646 550	1 564 724 133	1 602 802 476	1 640 880 058	1 678 957 640	1 710 592 242
	Projected SIV with WDM	kl/annum	1 328 391 341	1 323 164 904	1 318 268 239	1 316 470 037	1 314 671 835	1 356 877 237	1 399 129 164	1 441 381 319	1 483 633 246	1 525 885 173	1 543 760 518
Source	e of information (Evidence to BWSAudit))											
	Comments												

IWA Water Balance Diagram (million m³/annum) for Jun-23 (select year)

				57.5%
	Authorised consumption = 1024.375 172 Vold	Billed authorised = 902.179	Billed metered = 760.715	Revenue water = 902.179
System Input Volume = 1569.697			Billed unmetered = 141.464	
		Unbilled authorised = 122.196	Unbilled unmetered = 118.285	
		Apparent losses = 152.690	Apparent losses = 152.690	
266 l/c/d	Water losses = 5/5 322			Non-revenue water = 667.518
	Wale 100000 - 040.022	Real Losses = 392.632	Real Losses = 392.632	
	34.7%	ILI = 7.7	23.6 m3/km/day	42.5%

	Year ending	Jun-13	Jun-14	Jun-15	Jun-16	Jun-17	Jun-18	Jun-19	Jun-20	Jun-21	Jun-22	Jun-23
	Indicator as % of system input volume											
	% Revenue water	65.6%	63.5%	63.7%	64.1%	63.4%	64.1%	60.3%	61.3%	58.0%	57.8%	57.5%
	% Non-revenue water	34.4%	36.5%	36.3%	35.9%	36.6%	35.9%	39.7%	38.7%	42.0%	42.2%	42.5%
	% Water Losses	26.1%	29.2%	28.6%	27.5%	28.3%	27.8%	32.6%	31.4%	34.5%	34.1%	34.7%
	System input volume unit consumption											
	Litres / capita / day	307	307	307	305	279	265	266	260	260	276	266
	m ³ / household / month	28	27	26	25	23	22	22	21	21	24	23
	m ³ / connection / month	52	51	56	54	50	50	50	55	54	56	56
	Authorised Unit Consumption											
	Litres / capita / day	226	216	218	220	199	190	178	177	169	180	172
6	m ³ / household / month	20	19	19	18	16	15	14	14	14	16	15
cator	m ³ / connection / month	38	36	40	39	36	36	34	38	35	36	36
e Indi	Domestic (& ND) m ³ / connection / month	34	30	32	32	32	33	31	34	32	32	32
nance	Non-domestic m ³ / connection / month	251	207	227	196	114	110	107	142	124	191	228
erforn	Water loss indicators											
iey Pe	Litres / capita / day	81	91	89	86	81	75	88	83	91	96	94
×	m ³ / household / month	7	8	8	7	7	6	7	7	7	8	8
	m ³ / connection / month	14	15	16	15	14	14	17	18	19	19	20
	UARL : Losses (litres / connection / day)	62	60	61	60	57	60	60	59	59	61	61
	CARL : Losses (litres / connection / day)	336	362	387	365	348	338	402	452	498	505	469
	Infrastructure Leakage Index (ILI)	5.4	6.1	6.3	6.0	6.1	5.6	6.7	7.6	8.5	8.3	7.7
	CARL : Losses (m ³ / km mains / day)	16	20	21	19	19	18	22	25	28	26	24
	% Population growth	2.46%	2.42%	2.54%	1.08%	2.26%	5.35%	6.02%	3.62%	2.36%	-1.42%	0.28%
	% Water demand growth	3.18%	2.15%	2.74%	0.28%	-2.39%	-2.06%	3.36%	2.77%	1.22%	1.43%	1.44%
	% Water demand growth without WDM	1.89%	1.90%	1.90%	0.94%	1.88%	2.21%	2.53%	2.46%	2.40%	2.35%	2.10%
	% Water demand growth with WDM	-2.00%	-0.39%	-0.37%	-0.07%	-0.14%	1.52%	3.16%	3.07%	2.98%	2.89%	2.01%
	5 Year Annualised Population Growth	3.44%	3.67%	2.62%	1.70%	2.39%	2.84%	3.29%	#N/A	#N/A	0.38%	0.81%
	5 Year Annualised Water Growth	2.76%	2.52%	3.43%	1.76%	0.63%	-0.14%	0.26%	0.76%	1.80%	7.74%	0.94%

	Province	KwaZulu Nat	al										
	Municipal Code												
	District Municipality	Ugu, Umgun	gundlovu, Utł	ukela, Umziny	rathi, Amajuba	, Zululand, Un	nkhanyakude,	uThungulu, iL	embe, Sinson	ke			
	Municipality												
	Settlements												
		Year ending	Jun-13	Jun-14	Jun-15	Jun-16	Jun-17	Jun-18	Jun-19	Jun-20	Jun-21	Jun-22	Jun-23
npu	Population served	No	8 336 694	8 558 628	8 592 055	8 769 928	9 086 759	9 257 789	9 439 503	9 598 023	9 748 879	10 070 185	10 073 560
	Households served	No	2 373 601	2 281 732	2 279 882	2 357 879	2 467 639	2 589 827	2 639 984	2 684 074	2 725 741	2 862 463	2 878 821
	Connections - total	No	1 475 755	1 746 626	1 729 423	1 875 056	1 790 380	1 577 029	1 636 929	1 758 930	1 765 748	1 746 734	1 767 950
	Connections - metered	No	1 253 638	1 347 119	1 349 492	1 406 359	1 335 301	1 119 045	1 103 933	1 056 178	1 063 917	1 106 702	1 122 877
	Domestic (and non-domestic)	No	1 253 249	1 346 730	1 348 310	1 405 064	1 332 888	1 093 596	1 078 519	1 022 571	1 031 039	1 074 633	1 091 673
	Non-domestic	No	389	389	1 182	1 295	2 413	25 449	25 414	33 607	32 878	32 069	31 204
	Connections - unmetered	No	222 506	399 896	381 113	469 992	457 492	483 433	558 409	736 360	734 709	672 101	676 277
	Households / connection	No	1.6	1.3	1.3	1.3	1.4	1.6	1.6	1.5	1.5	1.6	1.6
	Length of mains	km	39 726	36 044	36 058	37 183	38 952	41 050	41 280	47 746	48 648	49 845	49 859
	Connections / km	No / km	37	48	48	50	46	38	40	37	36	35	35
	Average system pressure	m	54	52	55	53	51	51	52	51	51	51	51
	Time system pressurised	%	95%	95%	92%	94%	91%	88%	88%	85%	85%	83%	83%
	Apparent losses	%	21%	21%	22%	20%	21%	20%	23%	22%	21%	21%	21%
	Consumer meter age	%	7%	6%	7%	7%	7%	7%	7%	7%	7%	8%	7%
	Illegal connections	%	7%	8%	7%	6%	7%	7%	10%	9%	8%	8%	9%
	Data transfer	%	8%	7%	7%	7%	6%	6%	6%	6%	6%	6%	6%
Nati	System input volume	kl/annum	612 136 153	609 672 086	659 618 524	721 602 192	651 476 849	688 668 060	714 142 993	784 434 814	815 290 606	837 940 748	858 026 407
_	Own sources	kl/annum	589 225 413	586 447 744	638 582 991	706 232 086	583 163 046	299 095 952	245 969 974	249 036 083	243 014 312	249 508 172	252 809 304
	Other sources	kl/annum	22 910 740	23 224 342	21 035 533	15 370 106	68 313 803	389 572 108	468 173 019	535 398 730	572 276 293	588 432 576	605 217 103
	Authorised Consumption	kl/annum	357 676 447	374 335 283	391 152 543	404 635 110	434 165 051	460 018 596	462 103 735	435 896 805	468 072 563	444 549 764	456 470 309
	Billed authorised	kl/annum	333 648 783	353 221 230	361 062 862	376 988 435	393 058 703	389 440 467	396 616 408	376 822 396	411 353 226	373 556 640	371 100 538
	Billed metered	kl/annum	326 183 751	349 260 206	352 728 954	320 094 240	355 484 861	354 545 894	367 683 541	339 305 068	368 476 396	333 992 201	330 365 509
	Domestic (and non-domestic)	kl/annum	320 429 301	343 537 921	337 654 671	315 767 784	349 526 939	262 881 189	270 327 929	227 948 201	242 495 519	216 871 121	216 603 004
	Non-domestic	kl/annum	5 246 911	5 209 498	14 561 044	4 326 456	5 511 522	91 664 705	97 355 612	109 131 897	119 104 925	109 664 165	99 459 230
	Export volume	kl/annum	507 539	512 787	513 240	0	446 400	0	0	2 224 971	6 875 951	7 456 914	14 303 275
	Billed unmetered	kl/annum	7 465 032	3 961 024	8 333 908	56 894 195	37 573 841	34 894 573	28 932 867	37 517 328	42 876 830	39 564 439	40 735 028
	Unbilled authorised	kl/annum	24 027 664	21 114 053	30 089 681	27 646 675	41 106 349	70 578 129	65 487 327	59 074 409	56 719 338	70 993 124	85 369 771
	Unbilled metered	kl/annum	11 349 521	5 195 532	6 121 374	15 093 246	5 844 110	12 156 310	7 958 164	8 047 774	9 231 038	20 515 218	25 305 329
	Unbilled unmetered	kl/annum	12 678 143	15 918 521	23 968 306	12 553 429	35 262 239	58 421 819	57 529 163	51 026 635	47 488 299	50 477 907	60 064 442
	Water Losses	kl/annum	254 459 706	235 336 803	268 465 981	316 967 082	217 311 797	228 649 464	252 039 259	348 538 009	347 218 042	393 390 984	401 556 098
	Commercial / Apparent losses	kl/annum	53 627 383	48 514 682	58 646 394	64 061 311	44 923 653	45 008 558	58 434 102	75 193 756	73 458 937	82 518 442	85 713 105
	Physical / Real losses	kl/annum	200 832 323	186 822 121	209 819 588	252 905 771	172 388 144	183 640 906	193 605 157	273 344 253	273 759 105	310 872 542	315 842 993
	UARL	kl/annum	35 329 276	36 933 971	37 689 125	39 648 334	36 568 273	32 911 076	33 896 587	35 799 660	35 964 821	35 193 569	35 314 660
	Potential real loss saving	kl/annum	165 503 047	149 888 150	172 130 462	213 257 437	135 819 871	150 729 829	159 708 570	237 544 593	237 794 285	275 678 973	280 528 333
	Revenue water	kl/annum	333 648 783	353 221 230	361 062 862	376 988 435	393 058 703	389 440 467	396 616 408	376 822 396	411 353 226	373 556 640	371 100 538
	Non-Revenue water	kl/annum	278 487 370	256 450 856	298 555 662	344 613 757	258 418 146	299 227 593	317 526 585	407 612 418	403 937 380	464 384 109	486 925 869
	Projected SIV without WDM	kl/annum	43 603 915	400 954 522	444 970 884	457 020 979	469 131 482	481 304 355	493 541 629	506 099 522	518 791 284	531 809 410	541 437 756
	Projected SIV with WDM	kl/annum	26 460 547	392 657 904	420 759 436	425 409 087	430 090 864	434 897 949	439 821 566	450 710 967	462 086 587	473 756 930	482 546 696
Sourc	e of information												
ommer	ts												

IWA Water Balance Diagram (million m³/annum) for Jun-23 (select year)

	Authorised consumption = 456.470	Billed authorised = 371.101	Billed metered = 330.366	43.3% Revenue water = 371.101
System Input Volume = 858.026		Unbilled authorised = 85.370	Unbilled metered = 25.305 Unbilled unmetered = 60.064	
		Apparent losses = 85.713	Apparent losses = 85.713	
229 Void	Water losses = 401.556	Real Losses = 315.843	Real Losses = 315.843	Non-revenue water = 486.926
	46.8%	ILI = 8.9	17.4 m3/km/day	56.7%

	Year ending	Jun-13	Jun-14	Jun-15	Jun-16	Jun-17	Jun-18	Jun-19	Jun-20	Jun-21	Jun-22	Jun-23
indicator as % of system input volu	me											
% Revenue water		54.5%	57.9%	54.7%	52.2%	60.3%	56.5%	55.5%	48.0%	50.5%	44.6%	43.3%
% Non-revenue water		45.5%	42.1%	45.3%	47.8%	39.7%	43.5%	44.5%	52.0%	49.5%	55.4%	56.7%
% Water Losses		41.6%	38.6%	40.7%	43.9%	33.4%	33.2%	35.3%	44.4%	42.6%	46.9%	46.8%
System input volume unit consump	tion											
Litres / capita / day		201	195	210	225	196	204	207	223	227	226	229
m ³ / household / month		21	22	24	26	22	22	23	24	25	24	24
m ³ / connection / month		35	29	32	32	30	36	36	37	38	40	40
Authorised Unit Consumption												
Litres / capita / day		117	120	125	126	131	136	134	124	130	119	120
m ³ / household / month		13	14	14	14	15	15	15	13	14	13	13
m ³ / connection / month		20	18	19	18	20	24	24	21	22	21	21
Domestic (& ND) m ³ / connection /		20	18	18	18	20	19	19	15	16	16	16
Non-domestic m ³ / connection /		1124	1116	1027	278	190	300	319	271	302	285	266
Water loss indicators												
Litres / capita / day		84	75	86	99	66	68	73	99	98	107	109
m ³ / household / month		9	9	10	11	7	7	8	11	11	11	12
m ³ / connection / month		14	11	13	14	10	12	13	17	16	19	19
UARL : Losses (litres / connection /	day)	66	58	60	58	56	57	57	56	56	55	55
CARL : Losses (litres / connection /	day)	373	293	332	370	264	319	324	426	425	488	489
Infrastructure Leakage Index (ILI)		5.7	5.1	5.6	6.4	4.7	5.6	5.7	7.6	7.6	8.8	8.9
CARL : Losses (m ³ / km mains / day	r)	14	14	16	19	12	12	13	16	15	17	17
% Population growth		2.38%	2.66%	0.39%	4.16%	2.84%	2.74%	1.92%	1.82%	1.63%	2.43%	1.65%
% Water demand growth		33.42%	-0.40%	8.19%	29.25%	-0.62%	-2.31%	4.70%	6.73%	6.85%	3.35%	2.59%
% Water demand growth without W	DM	3.00%	819.54%	10.98%	3.64%	2.68%	2.62%	2.57%	2.54%	2.53%	2.51%	2.16%
% Water demand growth with WDM		1.26%	1383.94%	7.16%	2.53%	1.10%	1.11%	1.12%	1.80%	2.50%	2.52%	2.19%
5 Year Annualised Population Grow	/th	2.34%	2.03%	2.34%	1.50%	2.22%	1.58%	2.31%	2.23%	1.23%	1.50%	1.14%
5 Year Annualised Water Growth		1.65%	0.57%	1.34%	9.48%	7.26%	2.47%	5.05%	8.23%	6.92%	5.39%	6.59%

Non-revenue water trend

Population versus System Input Volume trend (litres / capita /day)

	Province	Limpopo											
	Municipal Code												
	District Municipality	Mopani, Vhe	mbe, Capricor	n, Waterberg,	Greater Sekhu	ukhune							
	Municipality												
	Settlements												
		Voar onding	lun 12	lun 14	lup 15	lup 16	lun 17	lun 10	lun 10	lun 20	Jun 21	lun 22	lun 22
-	Deputation conved	Ne	Juli-15	Juli-14	Juli-13	Juli-10	Juli-17	JUII- 10	Juli-19	2 975 444	JUII-2 I	Jun-22	Juli-23
	Population Served	No	4 000 330	4 000 024	4 130 240	4 223 907	3 917 000	3 000 100	3 07 1 011	3 0/3 114	3 0/0 42/	4 000 203	4 111 230
	Connections total	No	1 000 470	1 110 903	1 143 320	1 173 773	1 113 394	1 109 5/6	1 110 024	1 111 907	1 112 204	1 132 130	1 140 004
	Connections - total	NO	1 000 / 30	000 040	1 143 327	954 006	1 1 14 033	907.044	1 109 200	1 1 10 045	1 100 900	1011 307	1 0 10 909
	Domestia (and non domestia)	NO	707 071	809 012	829 930	951 000	011 301	907.011	000 07 1	004 003	004 437	007 927	657 200
		NO	101 011	000 912	629 950	001 000	011001	00/ 911	000 430	004 005	004 457	000 040	007 390
	Connections unmetered	NO	000.005	0	040.577	0	000.074	000.405	435	0	000 544	1801	000 1
ata	Connections - unmetered	NO	298 800	306 222	313 5/7	320 940	303 2/4	303 105	300 397	305 440	302 511	343 641	352 013
ut D	Households / connection	NO	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.1	1.1
lnp	Connections / km	Km	21 684	22 252	22 819	23 211	22 1/2	22 097	21 632	22 201	22 139	19 9/ 5	20 061
		NO/KM	00	00	00	50	00	00	51	00	50	51	00
	Average system pressure	m	34	33	38	48	50	50	49	50	50	4/	4/
	Time system pressurised	%	67%	67%	/5%	96%	99%	99%	98%	100%	100%	93%	100%
	Apparent losses	%	13%	13%	15%	20%	20%	20%	20%	20%	20%	20%	20%
	Consumer meter age	%	4%	4%	5%	6%	6%	6%	6%	6%	6%	6%	6%
	Illegal connections	%	4%	4%	5%	6%	6%	6%	6%	6%	6%	6%	6%
	Data transfer	%	5%	5%	6%	8%	8%	8%	8%	8%	8%	8%	8%
	System input volume	kl/annum	41 753 714	34 688 649	89 920 374	301 440 114	300 637 911	295 525 544	294 983 375	298 236 115	298 283 154	307 467 937	305 413 154
	Own sources	kl/annum	41 753 714	34 688 649	89 920 374	284 087 792	281 723 630	267 078 190	265 893 510	269 146 250	269 193 289	259 867 035	260 890 241
	Other sources	kl/annum	0	0	0	17 352 322	18 914 281	28 447 354	29 089 865	29 089 865	29 089 865	47 600 903	44 522 913
	Authorised Consumption	kl/annum	25 428 084	19 337 548	44 238 748	130 437 260	129 811 108	129 734 441	133 089 124	133 089 124	133 089 124	135 126 770	136 727 272
	Billed authorised	kl/annum	25 428 084	19 337 548	44 238 748	126 781 156	126 155 004	125 258 605	128 581 534	128 581 534	128 581 534	134 230 927	134 471 525
	Billed metered	kl/annum	25 428 084	19 337 548	44 238 748	68 642 958	71 123 225	69 950 548	74 534 532	74 534 532	74 534 532	74 635 533	70 465 664
	Domestic (and non-domestic)	kl/annum	25 428 084	19 337 548	44 238 748	68 642 958	71 123 225	68 657 408	71 721 050	71 721 050	71 721 050	72 197 253	63 424 295
s	Non-domestic	kl/annum	0	0	0	0	0	1 293 140	2 813 482	2 813 482	2 813 482	2 438 280	7 041 369
ation	Export volume	kl/annum	0	0	0	0	0	0	0	0	0	0	0
alcul	Billed unmetered	kl/annum	0	0	0	58 138 198	55 031 779	55 308 057	54 047 002	54 047 002	54 047 002	59 595 394	64 005 861
с С	Unbilled authorised	kl/annum	0	0	0	3 656 104	3 656 104	4 475 836	4 507 590	4 507 590	4 507 590	895 843	2 255 747
alan	Unbilled metered	kl/annum	0	0	0	1 898 329	1 898 329	2 205 061	2 122 295	2 122 295	2 122 295	505 053	1 864 957
ter B	Unbilled unmetered	kl/annum	0	0	0	1 757 775	1 757 775	2 270 775	2 385 295	2 385 295	2 385 295	390 790	390 790
Wa	Water Losses	kl/annum	16 325 630	15 351 101	45 681 626	171 002 854	170 826 802	165 791 103	161 894 251	165 146 991	165 194 030	172 341 167	168 685 882
	Commercial / Apparent losses	kl/annum	2 176 751	2 046 813	6 852 244	34 200 571	33 766 765	32 771 375	32 001 097	33 029 398	33 038 806	34 046 955	33 399 805
	Physical / Real losses	kl/annum	14 148 879	13 304 287	38 829 382	136 802 283	137 060 038	133 019 728	129 893 154	132 117 593	132 155 224	138 294 212	135 286 078
	UARL	kl/annum	10 473 024	10 484 711	13 607 747	22 676 841	23 246 331	23 166 644	22 460 526	23 499 659	23 434 508	18 404 579	19 892 666
	Potential real loss saving	kl/annum	3 675 855	2 819 577	25 221 635	114 125 442	113 813 706	109 853 085	107 432 628	108 617 933	108 720 717	119 889 633	115 393 412
	Revenue water	kl/annum	25 428 084	19 337 548	44 238 748	126 781 156	126 155 004	125 258 605	128 581 534	128 581 534	128 581 534	134 230 927	134 471 525
	Non-Revenue water	kl/annum	16 325 630	15 351 101	45 681 626	174 658 958	174 482 906	170 266 939	166 401 841	169 654 581	169 701 620	173 237 010	170 941 629
	Projected SIV without WDM	kl/annum			296 369 036	308 221 565	320 944 585	334 412 002	348 946 441	364 665 181	373 631 600	383 016 762	394 874 131
	Projected SIV with WDM	kl/annum			284 159 677	292 158 700	300 927 704	310 679 792	321 341 256	333 000 070	341 000 055	349 330 011	358 617 464
	Source of information												
	Comments												

IWA Water Balance Diagram (million m³/annum) for Jun-23 (select year)

	Authorised consumption = 136.727	Billed authorised = 134.472	Billed metered = 70.466	44.0% Revenue water = 134.472
	91 Void		Billed unmetered = 64.006	
System Input Volume = 305.413		Apparent losses = 33.400	Apparent losses = 33.400	
204 lioid	Water losses = 168.686	Real Losses = 135.286	Real Losses = 135.286	Non-revenue water = 170.942
	55.2%	ILI = 6.8	18.5 m3/km/day	56.0%

	Year ending	Jun-13	Jun-14	Jun-15	Jun-16	Jun-17	Jun-18	Jun-19	Jun-20	Jun-21	Jun-22	Jun-23
	Indicator as % of system input volume											
	% Revenue water	60.9%	55.7%	49.2%	42.1%	42.0%	42.4%	43.6%	43.1%	43.1%	43.7%	44.0%
	% Non-revenue water	39.1%	44.3%	50.8%	57.9%	58.0%	57.6%	56.4%	56.9%	56.9%	56.3%	56.0%
	% Water Losses	39.1%	44.3%	50.8%	56.7%	56.8%	56.1%	54.9%	55.4%	55.4%	56.1%	55.2%
	System input volume unit consumption											
	Litres / capita / day	29	23	60	195	210	209	209	211	211	206	204
	m ³ / household / month	3	3	7	21	23	22	22	22	22	23	22
	m ³ / connection / month	3	3	7	21	22	22	22	22	22	25	25
	Authorised Unit Consumption											
	Litres / capita / day	17	13	29	85	91	92	94	94	94	91	91
	m ³ / household / month	2	1	3	9	10	10	10	10	10	10	10
ators	m ³ / connection / month	2	1	3	9	10	10	10	10	10	11	11
ndic	Domestic (& ND) m ³ / connection / month	2	1	3	9	10	10	10	10	10	11	11
nce I	Non-domestic m ³ / connection / month							539			188	390
rmaı	Water loss indicators											
erfo	Litres / capita / day	11	10	30	111	119	118	115	117	117	116	112
(ey P	m ³ / household / month	1	1	3	12	13	12	12	12	12	13	12
×	m ³ / connection / month	1	1	3	12	13	12	12	12	12	14	14
	UARL : Losses (litres / connection / day)	26	26	33	53	57	57	55	58	58	50	54
	CARL : Losses (litres / connection / day)	36	33	93	320	337	328	321	326	327	375	367
	Infrastructure Leakage Index (ILI)	1.4	1.3	2.9	6.0	5.9	5.7	5.8	5.6	5.6	7.5	6.8
	CARL : Losses (m ³ / km mains / day)	2	2	5	16	17	16	16	16	16	19	18
	% Population growth	1.31%	1.32%	2.09%	2.12%	-2.70%	-4.36%	-0.60%	0.13%	0.07%	2.69%	2.98%
	% Water demand growth	-82.36%	-16.92%	159.22%	234.72%	82.85%	-0.99%	-0.94%	0.46%	0.56%	1.54%	1.19%
	% Water demand growth without WDM				1.96%	4.06%	4.16%	4.27%	4.43%	3.48%	2.49%	2.80%
	% Water demand growth with WDM				1.39%	2.91%	3.12%	3.34%	3.53%	3.01%	2.42%	2.55%
	5 Year Annualised Population Growth	2.19%	1.79%	2.09%	1.37%	-0.16%	-0.95%	-1.33%	-1.73%	-0.23%	1.10%	1.19%
	5 Year Annualised Water Growth	-26.02%	-29.59%	-16.80%	4.95%	4.90%	53.49%	26.78%	-0.21%	0.28%	1.18%	1.27%

Non-revenue water trend

6 830

1.2

55

50

91%

21%

8%

7%

7%

4 137 618

1 234 00

1 011 614

851 686

845 488

6 198

159 928

1.3

54

50

91%

21%

8%

7%

7%

283 727 45

212 945 064

70 782 39

152 496 210

130 423 536

93 502 609

86 346 281

3 822 474

3 333 854

36 920 927

22 072 674

17 104 518

4 968 156

131 231 24

28 053 282

103 177 963

19 146 429

84 031 534

130 423 536

153 303 919

193 319 250

178 246 145

18 711

Province Mpumalanga District Mu alitv Gert Sibande, Nkangala, Ehlanzeni Settlements Population served No 3 364 40 3 432 79 3 515 576 3 622 506 3 718 598 3 791 138 3 9 3 2 7 9 4 004 891 4 081 990 4 138 112 Households served No 938 434 972 86 1 007 297 1 041 751 1 083 337 1 125 545 1 167 43 1 188 589 1 211 204 1 235 393 Connections - total 938 434 972 86 1 007 297 958 345 987 355 1 023 588 1 065 25 1 101 661 1 123 986 1 039 664 No Connections - metered 832 19 862 903 893 615 818 667 860 931 887 372 923 305 951 961 970 599 856 127 No Domestic (and non-domestic) 832 190 862 903 893 615 816 572 857 97 885 632 921 56 949 421 968 077 849 297 No Non-domestic No 2 0 9 5 2 95 1740 174 2 540 2 522 Connections - unmetered No 106 244 109 96 113 682 139 679 126 424 136 216 141 948 149 700 153 387 183 538 Households / connection No 1. 1.0 1.1 1.1 1.1 1. 1. 1. 1 Length of mains No 18 769 19 45 20 146 19 495 20 344 21 241 22 003 22 755 23 177 19 073 Connections / km No/km 50 5 50 49 49 48 48 48 48 41 47 46 49 48 48 48 49 49 Average system pressure m % 100% 100% 100% 97% 96% 96% 96% 98% 98% Time system pressurised Apparent losses % 20% 209 22% 23% 22% 22% 23% 23% 22% % 6% 7% 7% 7% Consumer meter age 6% 7% 7% 7% 7% 7% 7% 7% llegal connections % 6% 6% 6% 7% 8% 7% 8% 89 8% 8% 8% 8% 8% 8% 8% Data transfe ٥/ kl/annum 289 875 481 System input volume 96 985 66 86 640 26 181 912 251 258 206 992 258 655 725 270 640 583 265 941 795 276 510 957 284 877 859 41 738 549 30 712 64 124 600 314 188 723 990 183 873 384 184 385 806 185 234 81 193 579 928 201 397 444 215 346 967 Own sources kl/annum 55 247 116 55 927 61 57 311 937 69 483 002 74 782 34 86 254 777 80 706 97 83 480 415 74 528 514 Other sources kl/annum 82 931 030 Authorised Consumption 65 877 978 54 457 25 138 611 286 145 345 86 146 665 27 149 841 145 107 965 177 154 059 411 148 254 596 155 999 607 Billed authorised kl/annum 64 613 63 54 457 25 107 295 334 137 912 324 140 706 31 145 820 338 142 607 38 142 155 508 140 491 650 137 168 580 Billed metered kl/annum 63 266 85 51 584 41 96 012 383 103 067 961 98 420 41 102 534 594 99 740 66 89 914 693 99 024 27 87 835 603 Domestic (and non-domestic) kl/annum 63 266 858 51 506 110 95 963 745 96 282 925 90 358 54 94 200 499 91 073 303 80 000 107 80 351 961 91 897 277 Non-domestic kl/annum 4 263 499 5 148 55 5 080 434 5 646 40 6 706 185 3 965 670 3 793 142 kl/annum 78 30 48 638 2 521 537 2 913 314 3 253 662 3 020 953 3 208 401 3 517 972 3 333 854 Export volume Billed unmetered kl/annum 1 346 775 2 872 84 11 282 951 34 844 362 42 285 897 43 285 743 42 866 72 52 240 815 52 656 047 38 144 307 Calc Unbilled authorised kl/annum 1 264 34 669 842 698 962 4 639 553 8 239 079 4 057 893 7 685 637 7 762 946 18 831 027 Unbilled metered kl/annum 1 264 345 669 842 698 962 3 864 354 7 514 736 2 9 1 9 5 7 9 2 901 550 2 919 579 15 085 756 Unbilled unmetered kl/annum 775 199 724 343 1 138 314 4 784 087 4 843 367 3 745 27 Water Losses kl/annum 31 107 68 113 309 861 116 581 166 119 276 51 126 669 813 136 623 263 133 875 874 32 183 01 73 947 074 119 595 706 6 221 53 28 545 863 Commercial / Apparent losses kl/annum 6 436 60 15 939 703 27 075 139 25 395 798 25 916 641 27 045 95 30 593 762 28 746 125 Physical / Real losses kl/annum 92 520 567 87 914 064 24 886 150 25 746 41 58 007 371 90 664 525 92 230 567 98 123 949 106 029 501 105 129 749 JARL kl/annum 16 158 20 19 222 51 19 713 29 19 115 409 19 629 04 20 395 321 21 194 04 22 317 61[.] 22 981 016 19 630 184 Potential real loss saving kl/annum 8 727 94 6 523 89 38 294 07 73 405 158 68 285 01 70 269 198 71 036 51 75 806 338 83 048 485 85 499 565 kl/annum Revenue wate 64 613 633 54 457 253 107 295 334 137 912 324 140 706 31 145 820 338 142 607 38 142 155 508 140 491 650 137 168 580 120 294 668 kl/annum 74 616 916 124 820 245 152 706 901 Non-Revenue water 32 372 03 32 183 01 117 949 41 123 334 41 134 355 450 144 386 209 Projected SIV without WDM kl/annum 165 469 088 168 526 75 171 623 501 174 431 660 177 173 247 179 770 240 182 420 44 185 087 237 187 753 213 190 276 223 Projected SIV with WDM 162 920 295 165 433 59 kl/annum 159 169 716 160 271 06 161 393 597 162 171 594 167 871 702 170 351 127 172 923 758 175 229 464 Source of information (Evidence to BWSAudit)

IWA Water Balance Diagram (million m³/annum) for

Comments

Jun-23 (select year)

		Authorised consumption = 152.496	Billed authorised = 130.424	Billed metered = 93.503	46.0% Revenue water = 130.424
		99 l/c/d		Billed unmetered = 36.921	
System Ir	nput Volume = 283.727		Unbilled authorised = 22.073	Unbilled metered = 17.105	
			Apparent losses = 28.053	Apparent losses = 28.053	
	186 l/c/d	Water losses = 131.231	Real Losses = 103.178	Real Losses = 103.178	Non-revenue water = 153.304
		46.3%	ILI = 5.4	15.1 m3/km/day	54.0%

	Year ending	Jun-13	Jun-14	Jun-15	Jun-16	Jun-17	Jun-18	Jun-19	Jun-20	Jun-21	Jun-22	Jun-23
	Indicator as % of system input volume											
	% Revenue water	66.6%	62.9%	59.0%	53.4%	54.4%	53.9%	53.6%	51.4%	49.3%	47.3%	46.0%
	% Non-revenue water	33.4%	37.1%	41.0%	46.6%	45.6%	46.1%	46.4%	48.6%	50.7%	52.7%	54.0%
	% Water Losses	32.1%	37.1%	40.6%	46.3%	43.8%	43.1%	44.9%	45.8%	48.0%	46.2%	46.3%
	System input volume unit consumption											
	Litres / capita / day	79	69	142	193	188	193	183	187	189	190	186
	m ³ / household / month	9	7	15	20	20	20	19	19	19	19	19
	m ³ / connection / month	9	7	15	22	22	22	21	21	21	23	23
	Authorised Unit Consumption											
	Litres / capita / day	54	43	84	103	105	109	100	100	97	101	99
	m ³ / household / month	6	5	9	11	11	11	10	10	10	10	10
tors	m ³ / connection / month	6	5	9	12	12	12	11	11	11	12	12
ndica	Domestic (& ND) m ³ / connection / month	6	5	9	11	12	12	11	11	10	12	12
nce ii	Non-domestic m ³ / connection / month				170	145	243	270	220	131	46	51
rmar	Water loss indicators											
perfo	Litres / capita / day	25	26	58	90	83	84	83	87	92	89	87
Key	m ³ / household / month	3	3	6	10	9	9	9	9	9	9	9
	m ³ / connection / month	3	3	6	10	10	9	9	10	10	11	11
	UARL : Losses (litres / connection / day)	47	54	54	55	54	55	55	56	56	52	52
	CARL : Losses (litres / connection / day)	73	73	158	264	244	243	237	244	258	277	279
	Infrastructure Leakage Index (ILI)	1.5	1.3	2.9	4.8	4.5	4.4	4.4	4.4	4.6	5.4	5.4
	CARL : Losses (m ³ / km mains / day)	4	4	8	13	12	12	11	12	13	15	15
	% Population growth	2.06%	2.03%	2.41%	1.50%	2.85%	2.30%	2.84%	2.78%	1.88%	1.65%	0.68%
	% Water demand growth	-32.78%	-10.67%	109.96%	72.74%	19.24%	2.38%	1.40%	1.08%	3.50%	2.39%	-0.20%
	% Water demand growth without WDM	1.86%	1.85%	1.84%	0.81%	1.60%	1.52%	1.47%	1.47%	1.45%	1.39%	1.47%
	% Water demand growth with WDM	0.49%	0.69%	0.70%	0.24%	0.47%	1.00%	1.51%	1.48%	1.49%	1.42%	1.53%
	5 Year Annualised Population Growth	3.90%	3.79%	2.44%	1.90%	2.44%	2.01%	1.96%	1.76%	1.68%	1.39%	0.84%
	5 Year Annualised Water Growth	-0.87%	-14.54%	1.01%	12.34%	12.38%	25.58%	12.21%	7.87%	2.37%	2.89%	0.86%

Non-revenue water trend

	Province	North West											
	Municipal Code												
	District Municipality	Bojanala Pla	tinum, Ngaka I	Modiri Molema	a, Dr Ruth Seg	jomotsi Momp	ati, Dr Kennet	h Kaunda					
	Municipality												
	Settlements												
		Year ending	Jun-13	.lun-14	Jun-15	Jun-16	.lun-17	Jun-18	Jun-19	.lun-20	.lun-21	Jun-22	Jun-23
	Population served	No	2 983 670	3 018 656	3 067 990	3 095 011	3 180 449	3 302 850	3 426 035	3 493 207	3 563 362	3 617 806	3 785 624
	Households served	No	950 178	981 195	1 012 210	1 043 246	1 086 489	1 148 702	1 191 389	1 214 630	1 238 949	1 257 771	1 330 969
	Connections - total	No	950 178	981 195	1 012 210	1 043 246	1 086 134	1 146 532	1 211 232	1 240 365	1 287 552	1 202 338	1 150 730
	Connections - metered	No	792 198	820 287	848 374	876 478	911 665	959 182	1 014 948	1 040 357	1 079 850	950 554	914 924
	Domestic (and non-domestic)	No	792 198	820 287	848 374	876 478	911 665	959 182	1 014 948	1 040 357	1 079 850	945 379	909 749
	Non-domestic	No	0	0	0	0	0	0	0	0	0	5 175	5 175
	Connections - unmetered	No	157 980	160 908	163 836	166 768	174 469	187 349	196 284	200 008	207 702	251 784	235 807
)ata	Households / connection	No	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.2
put C	Length of mains	No	19 004	19 624	20 244	20 865	21 723	22 931	24 225	24 807	25 751	24 047	23 015
5	Connections / km	No / km	50	50	50	50	50	50	50	50	50	50	50
	Average system pressure	m	44	48	40	41	41	41	39	39	38	36	35
	Time system pressurised	%	100%	100%	100%	100%	100%	100%	98%	98%	97%	91%	89%
	Apparent losses	%	20%	20%	20%	20%	20%	20%	20%	20%	20%	22%	21%
	Consumer meter age	%	6%	6%	6%	6%	6%	6%	6%	6%	6%	7%	7%
	Illegal connections	%	6%	6%	6%	6%	6%	6%	6%	6%	6%	7%	7%
	Data transfer	%	8%	8%	8%	8%	8%	8%	8%	8%	8%	7%	7%
	System input volume	kl/annum	94 215 724	94 215 724	140 790 960	210 881 559	213 735 701	219 351 285	229 533 831	228 655 907	231 128 407	235 581 129	240 023 761
	Own sources	kl/annum	94 215 724	94 215 724	140 790 960	210 881 559	213 735 701	219 351 285	229 519 305	196 073 916	231 116 917	194 355 617	196 206 973
	Other sources	kl/annum	0	0	0	0	0	0	14 526	32 581 991	11 490	41 225 512	43 816 788
	Authorised Consumption	kl/annum	69 670 864	46 595 531	70 626 520	106 813 028	106 813 028	106 813 028	114 351 977	117 037 586	114 497 173	120 708 402	123 956 092
	Billed authorised	kl/annum	48 837 157	44 370 049	68 401 038	104 587 546	104 587 546	104 587 546	112 126 495	114 812 104	114 267 940	116 006 297	119 006 246
	Billed metered	kl/annum	41 636 914	41 636 914	65 667 903	71 184 428	71 184 428	71 184 428	81 820 605	84 506 214	86 160 157	90 355 154	93 712 623
	Domestic (and non-domestic)	kl/annum	41 636 914	41 636 914	65 667 903	71 184 428	71 184 428	71 184 428	83 598 613	78 381 041	76 356 341	76 715 447	79 471 796
	Non-domestic	kl/annum	0	0	0	0	0	0	-1 778 008	6 125 173	9 803 816	13 639 708	14 240 827
ions	Export volume	kl/annum	0	0	0	0	0	0	0	0	0	0	0
culat	Billed unmetered	kl/annum	7 200 243	2 733 135	2 733 135	33 403 118	33 403 118	33 403 118	30 305 890	30 305 890	28 107 784	25 651 143	25 293 623
e Calo	Unbilled authorised	kl/annum	20 833 707	2 225 482	2 225 482	2 225 482	2 225 482	2 225 482	2 225 482	2 225 482	229 233	4 702 105	4 949 846
lance	Unbilled metered	kl/annum	20 833 707	2 225 482	2 225 482	2 225 482	2 225 482	2 225 482	2 225 482	2 225 482	194 913	194 240	328 166
er Ba	Unbilled unmetered	kl/annum	0	0	0	0	0	0	0	0	34 320	4 507 865	4 621 680
Wate	Water Losses	kl/annum	24 544 860	47 620 193	70 164 440	104 068 532	106 922 673	112 538 258	115 181 853	111 618 321	116 631 234	114 872 726	116 067 669
	Commercial / Apparent losses	kl/annum	4 908 972	9 524 039	14 032 888	20 813 706	21 384 535	22 507 652	23 132 356	22 230 649	23 326 247	24 735 927	24 935 204
	Physical / Real losses	kl/annum	19 635 888	38 096 154	56 131 552	83 254 825	85 538 139	90 030 606	92 049 498	89 387 672	93 304 987	90 136 799	91 132 465
	UARL	kl/annum	17 500 283	19 733 303	16 928 504	18 110 125	18 854 638	19 903 105	19 835 342	20 312 429	19 849 500	16 722 950	14 876 022
	Potential real loss saving	kl/annum	2 135 605	18 362 851	39 203 048	65 144 701	66 683 501	70 127 501	72 214 155	69 075 242	73 455 487	73 413 849	76 256 443
	Revenue water	kl/annum	48 837 157	44 370 049	68 401 038	104 587 546	104 587 546	104 587 546	112 126 495	114 812 104	114 267 940	116 006 297	119 006 246
	Non-Revenue water	kl/annum	45 378 567	49 845 675	72 389 922	106 294 014	109 148 155	114 763 740	117 407 335	113 843 803	116 860 467	119 574 831	121 017 515
	Projected SIV without WDM	kl/annum			176 385 959	180 026 961	183 772 663	187 627 304	191 595 375	194 917 610	197 968 765	199 754 533	204 016 802
	Projected SIV with WDM	kl/annum			172 002 865	172 783 535	174 380 237	176 049 461	177 793 163	180 335 831	183 200 905	184 915 601	189 063 905
	Comments												
	Commente												

IWA Water Balance Diagram (million m³/annum) for Jun-23 (select month)

49.6% Billed metered = 93.713 Revenue water = 119.006 Billed authorised = 119.006 Authorised consumption = 123.956 90 l/c/d System Input Volume = 240.024 Unbilled authorised = 4.950 Unbilled metered = 0.328 Apparent losses = 24.935 Apparent losses = 24.935 Non-revenue water = 121.018 Water losses = 116.068 174 l/c/d Real Losses = 91.132 Real Losses = 91.132 48.4% ILI = 6.1 10.8 m3/km/day 50.4%

		Year ending	Jun-13	Jun-14	Jun-15	Jun-16	Jun-17	Jun-18	Jun-19	Jun-20	Jun-21	Jun-22	Jun-23
	Indicator as % of system input volun	ne											
	% Revenue water		51.8%	47.1%	48.6%	49.6%	48.9%	47.7%	48.8%	50.2%	49.4%	49.2%	49.6%
	% Non-revenue water		48.2%	52.9%	51.4%	50.4%	51.1%	52.3%	51.2%	49.8%	50.6%	50.8%	50.4%
	% Water Losses		26.1%	50.5%	49.8%	49.3%	50.0%	51.3%	50.2%	48.8%	50.5%	48.8%	48.4%
	System input volume unit consumpt	ion											
	Litres / capita / day		87	86	126	187	184	182	184	179	178	178	174
	m ³ / household / month		8	8	12	17	16	16	16	16	16	16	15
	m ³ / connection / month	ı	8	8	12	17	16	16	16	15	15	16	17
	Authorised Unit Consumption												
	Litres / capita / day		64	42	63	95	92	89	91	92	88	91	90
	m ³ / household / month		6	4	6	9	8	8	8	8	8	8	8
tors	m ³ / connection / month	1	6	4	6	9	8	8	8	8	7	8	9
ndica	Domestic (& ND) m ³ / connection	n / month	6	4	6	9	8	8	8	7	7	7	8
nce ii	Non-domestic m ³ / connection	/ month										220	229
rmar	Water loss indicators												
perfo	Litres / capita / day		23	43	63	92	92	93	92	88	90	87	84
Key	m ³ / household / month		2	4	6	8	8	8	8	8	8	8	7
	m ³ / connection / month	ı	2	4	6	8	8	8	8	7	8	8	8
	UARL : Losses (litres / connecti	ion / day)	50	55	46	48	48	48	45	45	42	38	35
	CARL : Losses (litres / connecti	ion / day)	57	106	152	219	216	215	208	197	199	205	217
	Infrastructure Leakage Index	x (ILI)	1.1	1.9	3.3	4.6	4.5	4.5	4.6	4.4	4.7	5.4	6.1
	CARL : Losses (m ³ / km mains	s / day)	3	5	8	11	11	11	10	10	10	10	11
	% Population growth		1.19%	1.17%	1.63%	0.88%	1.82%	3.30%	3.79%	2.84%	1.98%	1.77%	3.07%
	% Water demand growth	h	7.12%	0.00%	49.43%	127.15%	23.21%	1.99%	3.63%	2.10%	0.35%	1.50%	1.91%
	% Water demand growth witho	ut WDM				1.02%	2.07%	2.09%	2.11%	1.92%	1.65%	1.23%	1.52%
	% Water demand growth with	n WDM				0.23%	0.69%	0.94%	0.97%	1.21%	1.51%	1.26%	1.59%
	5 Year Annualised Population	Growth	3.65%	3.24%	1.93%	0.97%	1.53%	1.82%	2.23%	2.44%	2.27%	1.81%	2.00%
	5 Year Annualised Water Gr	owth	9.06%	-7.23%	1.08%	19.11%	19.43%	18.41%	19.85%	20.07%	20.07%	20.23%	20.75%

	Province	Northern Ca	ре										
	Municipal Code		-										
	District Municipality	Namakwa, P	ixley Ka Seme	Siyanda, Fra	nces Baard, Jo	ohn Taolo Gae	tsewe						
	Municipality												
	Settlements												
		Voar onding	lup 12	lun 14	lup 15	lup 16	lun 17	lun 10	lun 10	lun 20	lun 21	lun 22	lun 22
đ	Deputation conved	Ne Ne	Juli-15	Juli-14	JUII-13	Juli-10	Juli-17	Juli-10	Juli-19	Juli-20	JUII-21	Jun-22	Juli-25
-	Population Served	No	202 661	202 496	10// 4/0	1 003 944	111/113	1 140 419	1 104 002	1 1/1 000	1 102 000	1 1// 21/	1 10/ 423
	Connections total	No	292 001	202 100	311/19	321268	335222	342113	349180	351416	354467	349045.2981	346993.5137
	Connections - total	NO	292 001	302 100	301 903	312 4/ 9	330 310	323 323	329 343	206 204	329 930	324 010	324 194
	Connections - metered	NO	252 251	200 705	209 043	213 011	277 142	279 030	293 243	290 291	293 100	270 193	273 142
	Non domestic	No	232 231	200703	202 240 6 707	203 433	211 143	213 100	203 313	232 043	230 330	212 210	213 040
	Connections unmetered	No	40.424	41 421	20 650	430	52 166	J 932	3 932	4 243	20 620	5 925	0 094 51 145
	Connections - unmetered	NO	40 424	41421	39 039	43 040	55 100	4/ 010	40 230	39 0/ 3	39 020	J1 /40	31 143
	Households / connection	NO	1.0	1.0	1.0	1.0	1.0	1.1	1.1	7.567	7.405	7,522	7.402
	Connections / km	Nii No / km	5 655	0 044	5 000	5 070	0 391	0 000	0 903	7 307	1 423	1 522	1 493
		NO / KM	00	00	52	20	20	41	4/	44	44	43	43
	Time system pressure	m v	40	40	40	000/	0.00/	40	40	40	40	41	41
	Annerent lesson	70 0/	20%	20%	90%	90%	90%	99%	99%	99%	99% 47%	90%	90%
		70	20%	20%	19%	19%	19%	10 %	10 %	1076	69/	C0/	60/
		70 0/	0%	0%	0% 5%	0%	0% 6%	0% E0/	0% 5%	0% 5%	0% E0/	0% 5%	0% E0/
	Dete transfor	70 0/	0 %	0 %	J /6	0 %	0 %	J /6	J /6 70/	5%	J /6	5%	5% 6%
at	Data transier	70	0%	70 020 226	04 000 824	07 402 200	0%	400 202 027	1 70	0%	400 244 402	070	0%
Ň		Ki/annum	70 020 220	70 020 220	01 557 441	97 402 200	07 109 201	100 202 027	101 074 256	07 091 069	109 244 193	10/ 420 921	00 570 141
	Other sources	Ki/annum	19 930 230	19 930 230	252 200	2 005 000	97 120 321	100 303 937	101 074 230	5/001000	0 212 2/2	7 0/6 0/0	7 005 275
	Other sources	ki/annum	54 000 405	54 000 405	352 390	2 090 000	2 149 4 10	54 070 575	54 202 202	5 431 443	0 3 13 343	7 940 040	1 095 3/5
	Authorised Consumption	Ki/annum	51 222 105	51 222 105	54 316 734	54 750 440	53 563 280	54 8/0 5/5	54 362 880	52 502 934	50 231 942	50 312 890	50 444 959
	Dilled meterod	Ki/annum	JU 2/ J 200	JU 27 J 200	53 001 709	31 / 30 140	49 / 33 2/1	JI 010 202	01 100 47 0 46 409 044	49 932 400	40 000 413	47 903 000	40 0/2 109
	Billed metered	Ki/annum	47 192 300	47 192 300	52 720 400	44 002 307	43 440 340	40 011 /0/	40 490 244	45 27 5 300	40 127 992	43 034 030	43 941 201
	Domestic (and non-domestic)	Ki/annum	4/ 192 000	4/ 192 300	52 550 992	43 100 001	42 240 300	39 000 200	30 / 34 0/ 0	000/ 04/	30 300 410	32 47 1 539	32 343 390
	Ivon-domestic	Ki/annum	0	0	15 000	033 0/0	1 000 472	/ 440 311	7 334 930	0 920 723	0 331 420	070.000	11 124 090
	Export volume	Ki/dililuili	2 092 720	2 092 720	061 241	7 752 772	6 204 721	5 106 E1E	200 410	200 900	200 100	212 900	4 120 949
		Ki/annum	046 940	046 910	901 241 625 025	2 024 645	2 820 000	2 252 202	2 400 407	2 570 529	1 551 527	2 227 204	2 272 950
		kl/oppum	004 910	004 910	E90 497	0 567 056	2 567 256	5 252 252	J 199 401	1 007 064	66 402	771 720	017 270
		Ki/dililuili	42 000	42 000	J09 407	2 307 230	1 060 750	0 700 750	490 004	1 402 664	1 495 025	1 666 470	1 555 470
	Water Lesses	kl/annum	42 000	42 000	37 503 007	404 303	45 714 457	45 512 362	46 711 376	50 000 577	50 012 251	57 114 030	57 020 557
	Commercial / Apparent losses	kl/annum	5 7/3 226	5 7/3 226	7 213 698	8 270 7/9	8 700 985	40 010 002 8 000 7/17	8 236 773	8 835 523	10 152 730	9 701 789	9 687 /39
	Physical / Real Josses	kl/annum	22 972 905	22 072 005	30 370 300	34 343 674	37 013 472	37 290 615	38 474 603	41 174 053	48 859 521	47 412 242	AT 342 117
	IIARI	kl/annum	5 756 033	5 943 369	5 416 085	5 002 695	5 351 515	5 459 853	5 675 189	5 726 234	5 680 331	5 753 056	5 700 627
	Potential real loss saving	kl/annum	17 216 872	17 029 536	24 963 315	29 340 978	31 661 957	31 830 762	32 799 414	35 447 819	43 179 190	41 659 185	41 641 490
	Revenue water	kl/annum	50 275 286	50 275 286	53 681 709	51 756 140	49 733 271	51 618 282	51 163 473	49 932 406	48 680 415	47 985 686	48 072 109
	Non-Revenue water	kl/annum	29 662 950	29 662 950	38 228 122	45 646 068	49 544 467	48 765 655	49 910 783	52 580 105	60 563 778	59 441 234	59 402 407
	Projected SIV without WDM	kl/annum	112 247 001	115 571 350	119 025 335	121 447 491	123 940 799	126 508 006	129 151 993	131 875 782	134 262 479	136 699 939	139 189 364
	Projected SIV with WDM	kl/annum	104 021 938	107 361 526	110 800 272	111 544 528	112 919 236	114 367 843	115 893 230	118 057 719	120 444 416	122 881 875	125 371 301
											.20 110		.2007.001
Sourc	e of information												
_													
mme	nts												

IWA Water Balance Diagram (million m³/annum) for Jun-23 (select year)

	Authorised consumption = 50.445	Billed authorised = 48.072	Billed metered = 43.941 Billed unmetered = 4.131	44.7% Revenue water = 48.072
System Input Volume = 107.475		Unbilled authorised = 2.373 Apparent losses = 9.687	Apparent losses = 9.687	
247 Void	Water losses = 57.030	Real Losses = 47.342	Real Losses = 47.342	Non-revenue water = 59.402
	53.1%	ILI = 8.3	17.3 m3/km/day	55.3%

Ye	ear ending	Jun-13	Jun-14	Jun-15	Jun-16	Jun-17	Jun-18	Jun-19	Jun-20	Jun-21	Jun-22	Jun-23
Indicator as % of system input volume												
% Revenue water		62.9%	62.9%	58.4%	53.1%	50.1%	51.4%	50.6%	48.7%	44.6%	44.7%	44.7%
% Non-revenue water		37.1%	37.1%	41.6%	46.9%	49.9%	48.6%	49.4%	51.3%	55.4%	55.3%	55.3%
% Water Losses		35.9%	35.9%	40.9%	43.8%	46.0%	45.3%	46.2%	48.8%	54.0%	53.2%	53.1%
System input volume unit consumption	ı											
Litres / capita / day		207	205	233	246	243	241	237	239	253	249	247
m³ / household / month		23	22	25	25	25	24	24	24	26	26	26
m ³ / connection / month		23	22	25	26	25	26	26	26	28	28	28
Authorised Unit Consumption												
Litres / capita / day		133	132	138	138	131	132	127	122	116	116	116
m ³ / household / month		15	14	14	14	13	13	13	12	12	12	12
m ³ / connection / month		15	14	15	15	13	14	14	13	13	13	13
Domestic (& ND) m ³ / connection /		15	14	15	14	13	12	12	11	11	10	10
Non-domestic m ³ / connection /				0	11	249	158	160	136	144	156	138
Water loss indicators												
Litres / capita / day		74	74	96	108	112	109	110	117	137	133	132
m³ / household / month		8	8	10	11	11	11	11	12	14	14	14
m ³ / connection / month		8	8	10	11	12	12	12	13	15	15	15
UARL : Losses (litres / connection / day	y)	54	54	49	44	44	46	47	47	47	49	48
CARL : Losses (litres / connection / day	y)	215	208	276	301	307	316	320	341	406	401	400
Infrastructure Leakage Index (ILI)		4.0	3.9	5.6	6.9	6.9	6.8	6.8	7.2	8.6	8.2	8.3
CARL : Losses (m ³ / km mains / day)		11	10	14	16	15	15	15	15	18	17	17
% Population growth		0.83%	0.84%	1.08%	0.79%	1.82%	2.48%	2.08%	1.36%	0.77%	0.24%	0.23%
% Water demand growth		16.50%	0.00%	14.98%		3.93%	1.52%	0.90%	1.05%	3.96%	2.37%	-0.81%
% Water demand growth without WDM		21.77%	2.96%	2.99%	1.01%	2.04%	2.06%	2.08%	2.10%	1.96%	1.81%	1.82%
% Water demand growth with WDM		21.80%	3.21%	3.20%	0.33%	0.95%	1.26%	1.31%	1.60%	1.94%	2.02%	2.02%
5 Year Annualised Population Growth		3.61%	3.37%	1.34%	0.71%	1.28%	1.36%	1.56%	1.50%	1.12%	0.62%	0.39%
5 Year Annualised Water Growth		1.87%	0.25%	2.95%	7.26%	7.67%	4.66%	#DIV/0!	5.89%	19.22%	22.24%	26.44%

Non-revenue water trend

Population versus System Input Volume trend (litres / capita /day)

	Province Western Cape Municipal Code												
	Municipal Code District Municipality West Coast, Cape Winelands, Overberg, Eden, Central Karoo												
	District Municipality	West Coast,	Cape Winelan	ds, Overberg,	Eden, Central	Karoo							
	Municipality												
	Settlements												
		Year ending	Jun-13	Jun-14	Jun-15	Jun-16	.lun-17	Jun-18	Jun-19	.lun-20	.lun-21	Jun-22	.lun-23
	Population served	No	5 716 869	5 839 069	5 968 357	5 988 277	6 179 495	6 378 777	6 587 909	6 695 346	6 792 496	7 080 236	7 210 799
	Households served	No	1 664 680	1 721 865	1 779 233	1 836 810	1 909 572	1 909 994	1 972 939	2 005 110	2 034 235	2 156 899	2 197 947
	Connections - total	No	1 007 322	1 126 438	1 140 212	1 174 883	1 222 858	1 228 858	1 269 935	1 292 210	1 313 338	1 275 323	1 251 011
	Connections - metered	No	1 104 241	1 120 363	1 115 699	1 149 398	1 195 967	1 201 490	1 241 613	1 262 916	1 283 778	1 247 152	1 253 832
	Domestic (and non-domestic)	No	1 062 217	1 074 402	1 108 181	1 141 857	1 188 398	1 193 957	1 233 811	1 255 391	1 275 882	1 192 841	1 199 304
	Non-domestic	No	42 024	45 962	7 518	7 541	7 569	7 533	7 802	7 525	7 896	54 311	54 528
	Connections - unmetered	No	35 105	52 036	32 030	33 026	34 460	34 901	36 125	36 819	37 456	82 482	51 708
ata	Households / connection	No	15	15	16	16	1.6	16	1.6	16	1.5	17	18
put D	Length of mains	km	20 950	21 826	21 830	22 456	23 353	23 425	24 185	24 615	25 096	23 091	23 225
u	Connections / km	No / km	52	52	52	52	52	52	53	52	52	55	54
	Average system pressure	m	47	49	49	49	49	50	51	51	51	49	49
	Time system pressurised	%	98%	98%	98%	98%	98%	98%	98%	98%	98%	99%	99%
	Apparent losses	%	18%	19%	19%	19%	19%	19%	19%	19%	19%	17%	17%
	Consumer meter age	%	6%	7%	7%	7%	7%	7%	7%	7%	7%	7%	7%
	Illegal connections	%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%
	Data transfer	%	7%	7%	7%	7%	7%	7%	7%	7%	7%	6%	6%
	System input volume	kl/annum	464 994 952	460 730 191	497 893 972	480 100 513	433 318 438	329 954 277	329 437 925	372 696 927	400 412 069	431 724 832	454 628 348
	Own sources	kl/annum	442 747 798	438 564 799	473 966 962	456 657 708	413 949 492	316 309 894	315 858 403	357 009 535	383 460 990	410 071 703	432 088 395
	Other sources	kl/annum	22 247 154	22 165 392	23 927 010	23 442 805	19 368 946	13 644 383	13 579 522	15 687 391	16 951 079	21 653 129	22 539 953
	Authorised Consumption	kl/annum	390 413 736	387 545 144	412 184 315	399 692 547	353 462 763	286 957 418	273 792 791	310 015 037	324 960 726	327 140 077	338 472 397
	Billed authorised	kl/annum	371 470 695	363 504 527	388 392 616	375 550 485	332 186 791	266 072 254	251 409 918	287 474 273	301 071 326	316 673 284	327 938 793
	Billed metered	kl/annum	370 823 926	362 870 547	387 765 553	374 712 387	331 220 135	265 104 392	250 443 832	286 519 293	299 961 688	301 121 542	312 155 618
	Domestic (and non-domestic)	kl/annum	259 313 932	318 607 454	337 861 618	329 043 506	294 100 802	237 877 504	224 336 397	256 090 905	268 142 392	213 584 289	221 110 860
su	Non-domestic	kl/annum	78 475 446	11 689 856	12 139 673	12 112 296	10 640 615	8 462 670	7 716 559	7 633 398	7 326 551	58 797 599	61 848 758
ulatio	Export volume	kl/annum	33 034 548	32 573 237	37 764 262	33 556 585	26 478 719	18 764 217	18 390 876	22 794 991	24 492 745	28 739 654	29 196 000
Calcu	Billed unmetered	kl/annum	646 769	633 979	627 063	838.098	966 656	967 862	966 086	954 980	1 109 638	15 551 742	15 783 175
nce (Unbilled authorised	kl/annum	18 943 041	24 040 617	23 791 698	24 142 062	21 275 972	20 885 164	22 382 873	22 540 763	23 889 400	10 466 793	10 533 603
Bala	Unbilled metered	kl/annum	15 938 136	14 378 853	14 112 167	14 445 174	11 582 262	11 236 946	12 670 307	12 460 104	13 296 009	3 311 392	3 416 213
/ater	Unbilled unmetered	kl/annum	3 004 905	9 661 764	9 679 532	9 696 888	9 693 710	9 648 218	9 712 567	10 080 659	10 593 391	7 155 401	7 117 391
Ν	Water Losses	kl/annum	74 581 216	73 185 048	85 709 657	80 407 966	79 855 675	42 996 859	55 645 133	62 681 890	75 451 343	104 584 755	116 155 952
	Commercial / Apparent losses	kl/annum	13 057 583	13 544 994	15 863 032	14 881 802	14 779 585	7 957 803	10 298 729	11 601 083	13 964 437	18 010 366	20 003 023
	Physical / Real losses	kl/annum	61 523 634	59 640 054	69 846 625	65 526 164	65 076 090	35 039 056	45 346 404	51 080 807	61 486 906	86 574 388	96 152 929
	UARL	kl/annum	21 268 339	22 724 165	22 918 885	23 603 815	24 561 125	25 275 656	26 286 206	26 925 639	27 570 655	25 467 046	25 164 923
	Potential real loss saving	kl/annum	40 255 295	36 915 889	46 927 740	41 922 349	40 514 965	9 763 400	19 060 198	24 155 168	33 916 252	61 107 342	70 988 006
	Revenue water	kl/annum	371 470 695	363 504 527	388 392 616	375 550 485	332 186 791	266 072 254	251 409 918	287 474 273	301 071 326	316 673 284	327 938 793
	Non-Revenue water	kl/annum	93 524 257	97 225 665	109 501 356	104 550 028	101 131 647	63 882 023	78 028 007	85 222 654	99 340 743	115 051 548	126 689 555
	Projected SIV without WDM	kl/annum	542 685 254	566 857 989	586 038 713	605 898 366	625 798 946	643 982 672	662 166 398	680 350 124	698 533 849	716 717 575	737 258 671
	Projected SIV with WDM	kl/annum	508 799 436	518 082 715	533 231 622	544 292 254	555 536 056	566 838 377	578 140 698	589 443 018	600 745 339	612 047 660	632 588 756
	Source of information												
	Comments												

IWA Water Balance Diagram (million m³/annum) for Jun-23 (select year)

				72.1%
System Input Volume = 454.628	Authorised consumption = 338.472	Billed authorised = 327.939	Billed metered = 312.156	Revenue water = 327.939
		Unbilled authorised = 10.534	Billed unmetered = 15.783	
162 l/c/d		Apparent losses = 20.003	Apparent losses = 20.003	
	Water losses = 116.156	Real Losses = 96.153	Real Losses = 96.153	Non-revenue water = 126.690
	25.5%	ILI = 3.8	11.3 m3/km/day	27.9%

	Year ending	Jun-13	Jun-14	Jun-15	Jun-16	Jun-17	Jun-18	Jun-19	Jun-20	Jun-21	Jun-22	Jun-23
Key performance indicators	Indicator as % of system input volume											
	% Revenue water	79.9%	78.9%	78.0%	78.2%	76.7%	80.6%	76.3%	77.1%	75.2%	73.4%	72.1%
	% Non-revenue water	20.1%	21.1%	22.0%	21.8%	23.3%	19.4%	23.7%	22.9%	24.8%	26.6%	27.9%
	% Water Losses	16.0%	15.9%	17.2%	16.7%	18.4%	13.0%	16.9%	16.8%	18.8%	24.2%	25.5%
	System input volume unit consumption											
	Litres / capita / day	207	201	211	204	180	134	129	143	152	156	162
	m ³ / household / month	22	21	22	20	18	14	13	15	15	16	16
	m ³ / connection / month	33	32	34	32	28	21	20	23	24	26	28
	Authorised Unit Consumption											
	Litres / capita / day	171	167	172	168	145	115	106	118	121	115	118
	m ³ / household / month	18	17	18	17	14	12	11	12	12	12	12
	m ³ / connection / month	27	26	27	26	22	18	17	19	19	19	21
	Domestic (& ND) m ³ / connection / month	21	25	26	25	22	18	16	18	19	16	16
	Non-domestic m ³ / connection / month	156	21	135	134	117	94	82	85	77	90	95
	Water loss indicators											
	Litres / capita / day	36	34	39	37	35	18	23	26	30	40	44
	m ³ / household / month	4	4	4	4	3	2	2	3	3	4	4
	m ³ / connection / month	6	5	6	6	5	3	4	4	5	7	8
	UARL : Losses (litres / connection / day)	53	55	55	55	55	56	57	57	58	55	55
	CARL : Losses (litres / connection / day)	154	145	168	153	146	78	98	108	128	186	211
	Infrastructure Leakage Index (ILI)	2.9	2.6	3.0	2.8	2.6	1.4	1.7	1.9	2.2	3.4	3.8
	CARL : Losses (m ³ / km mains / day)	8	7	9	8	8	4	5	6	7	10	11
	% Population growth	2.14%	2.14%	2.21%	0.06%	1.75%	3.21%	3.25%	2.45%	1.54%	2.83%	3.03%
	% Water demand growth	-1.68%	-0.92%	8.07%	-6.18%	-6.71%	-17.10%	-12.81%	6.28%	10.25%	7.63%	6.56%
	% Water demand growth without WDM	2.37%	4.45%	3.38%	1.67%	3.34%	3.09%	2.86%	2.78%	2.71%	2.64%	2.73%
	% Water demand growth with WDM	1.69%	1.82%	2.92%	1.03%	2.07%	2.05%	2.01%	1.97%	1.94%	1.90%	2.62%
	5 Year Annualised Population Growth	2.61%	2.83%	2.32%	1.36%	2.00%	1.78%	1.94%	2.02%	1.67%	1.86%	1.71%
	5 Year Annualised Water Growth	0.38%	-0.39%	1.33%	0.30%	-1.73%	-6.46%	-8.43%	-4.14%	-1.03%	6.54%	5.31%

